Шкалы измерений
Классификация измерений
Области и виды измерений
1.3.1.
Область измерений – совокупность измерений физических величин, свойственных какой-либо области науки или техники и выделяющихся своей спецификой.
Вид измерений – часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.
В метрологии различают следующие области и виды измерений:
1. Измерение геометрических величин: длин, углов, отклонений формы поверхностей.
2. Измерение механических величин: массы, силы, прочности и пластичности, крутящих моментов.
3. Измерение параметров потока, расхода, уровня, объёма веществ.
4. Измерение давления: избыточного, атмосферного, абсолютного, вакуума.
5. Физико-химические измерения: вязкости, плотности, концентрации, влажности.
6. Теплофизические и температурные измерения.
7. Измерение времени и частоты.
8. Измерения электрических и магнитных величин на постоянном и переменном токе: силы тока, ЭДС, напряжения, мощности, сопротивления, ёмкости, индуктивности.
9. Радиоэлектронные измерения: интенсивности сигналов, параметров формы и спектра сигналов.
10. Измерения акустических величин в различных средах (воздушной, твёрдой, жидкой).
11. Оптические и оптико-физические измерения: оптической плотности, коэффициента пропускания.
12. Измерения ионизирующих излучений и ядерных констант: дозиметрических и спектральных характеристик ионизирующих излучений.
Измерения могут быть классифицированы по ряду признаков: по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.
1. По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.
Прямые измерения – измерения, при которых искомое значение величины находят непосредственно из опытных
данных (измерения массы на весах, температуры термометром, длины с помощью линейных мер).
Косвенные измерения – измерения, при которых искомое значение находят на основании известной зависимости между этой величиной и величинами, полученными прямыми измерениями (определение плотности однородного тела по его массе и объёму, удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения).
Совокупные измерения – измерения нескольких однородных величин, при которых искомое значение величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин (измерения, при которых масса отдельных гирь набора находится по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь).
Совместные измерения – одновременные измерения двух или нескольких неодноимённых величин для нахождения зависимости между ними (проводимые одновременно измерения приращения длины образца в зависимости от изменений его температуры и определение коэффициента линейного расширения по формуле k = Dl / (l Dt)).
В результате измерения должны быть определены 3 величины:
1) Число, выражающее отношение измеряемой физической величины к общепринятой единице измерения
A= X/x,
где A – числовое значение измеряемой величины; X – измеряемая величина; x – единица измерения.
2) Погрешность результата измерения.
3) Доверительная вероятность допущенной погрешности (при обычных технических измерениях погрешность определяется с вероятностью 95%).
П р и м е р, иллюстрирующий значение доверительной вероятности. Вероятность того, что спектакль в театре состоится, составляет 95%. Люди, купившие билеты на спектакль, обычно не задумываются о небольшой вероятности (5%), что спектакль может быть отменен или не состоится по какой-либо причине. Ввиду того, что в этой ситуации вероятность отмены спектакля, равная 5%, является низкой, то зрители не задумываются, покупать билет или нет.
С другой стороны, вероятность того, что (когда вы выходите на улицу) с вами ничего плохого не случится (на голову не упадёт кирпич, вы не провалитесь в люк и т.п.), составляет 99,9999%. Вероятность обратного составляет 0,0001%, что ничтожно мало. Поэтому нормальный человек, выходя из дома, не задумывается о том, что с ним что-то может случиться. Но если предположить, что и в этом случае, как и в случае со спектаклем, вероятность благополучного похода на улицу составит 95%, то многие начнут сомневаться, а стоит ли выходить на улицу.
Можно сказать, что доверительная вероятность допущенной погрешности зависит от важности производимых измерений (чем более важны и ответственны измерения, тем более высокая доверительная вероятность допущенной погрешности должна быть задана).
2. По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и
статические измерения.
Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.
Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.
Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения.
Статические и динамические измерения в идеальном виде на практике редки.
3. По количеству измерительной информации различают однократные и многократные измерения.
Однократные измерения – это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин.
Практическое применение такого вида измерений всегда приводит к большим погрешностям, поэтому следует проводить не менее трёх однократных измерений и находить конечный результат как среднее арифметическое значение.
Многократные измерения характеризуются превышением числа измерений количества измеряемых величин.
Обычно минимальное число измерений больше трёх. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.
Шкала физической величины – это упорядоченная совокупность значений физической величины, основой для измерений данной величины.
Различают следующие типы шкал измерений:
– Шкалы наименований характеризуются оценкой (отношением) эквивалентности различных качественных проявлений свойства. Эти шкалы не имеют нуля и единицы измерений, в них отсутствуют отношения сопоставления типа "больше-меньше". Это самый простой тип шкал. Пример: шкалы цветов, представляемые в виде атласов цветов. При этом процесс измерений заключается в достижении (например, при визуальном наблюдении) эквивалентности испытуемого образца с одним из эталонных образцов, входящих в атлас цветов.
– Шкалы порядка описывают свойства величин, упорядоченные по возрастанию или убыванию оцениваемого свойства, т.е. позволяют установить отношение больше/меньше между величинами, характеризующими это свойство. В этих шкалах отсутствует единица измерения, так как невозможно установить, в какое число раз больше или меньше проявляется свойство величины. Пример: шкалы измерения твёрдости, баллов силы ветра, землетрясений.
– Шкалы интервалов (разностей) описывают свойства величин не только с помощью отношений эквивалентности и порядка, но также и с применением отношений суммирования и пропорциональности интервалов (разностей) между количественными проявлениями свойства. Эти шкалы могут иметь условную нулевую точку. Пример: летоисчисление по различным календарям, температурные шкалы (Цельсия, Фаренгейта, Реомюра).
– Шкалы отношений описывают свойства величин, для множества количественных проявлений которых применимы логические отношения эквивалентности, порядка и пропорциональности, а для некоторых шкал также отношение суммирования. В шкалах отношений существует естественный нуль и по согласованию устанавливается единица измерения. Пример: шкала массы, шкала термодинамической температуры Кельвина.
– Абсолютные шкалы кроме всех признаков шкал отношений обладают дополнительным признаком: в них присутствует однозначное определение единицы измерения. Такие шкалы присущи таким относительным единицам, как коэффициенты усиления, ослабления, полезного действия и т.д.
– Условные шкалы – шкалы величин, в которых не определена единица измерения. К ним относятся шкалы наименований и порядка.