Технология и режимы механизированной сварки в среде защитных газов.

При сварке судостроительных сталей в качестве защитного газа применяют углекислый газ (СО2). Механизированную сварку можно осуществлять тонкой электродной проволокой (dэ = 0,8 – 1,8мм) во всех пространственных положениях с использованием полуавтоматов типа А-547Р, ПДПГ-300, «Гранит», «Нева». Сварку проводят с применением сварочной проволоки марок Св-08ГС или Св-08Г2С.

Подготовку кромок при сварке проволокой dэ = т0,8 – 1,2 мм производят как для РДС, т.е. по ГОСТ РФ 5264-69, а при сварке проволокой dэ = 1,6 – 2,0 мм, как для сварки в защитных газах, т.е. по ГОСТ РФ 14771-69. Ориентировочные рекомендации по выбору режимов сварки приведены в [ ].

Технология сварки меди и её сплавов.Медь на судостроительных заводах сваривали угольным электродом или с помощью газового пламени. Если завод располагал соответствующими установками, для сварки меди предпочитают использовать метод аргонно-дуговой сварки неплавящимся (вольфрамовым) электродом. Основное осложнение при сварке меди связано с высокой её теплопроводностью, низкими механическими свойствами при высоких температурах и интенсивным окислением и засорением сварочной ванны закисью меди (Сu2О). Закись меди в смеси с медью залегает ме6жду зёрнами основного металла, образуя хрупкие прослойки, по которым и происходит разрушение; сварное соединение становится склонным к трещинообразованию. Процесс сварки может быть осложнён также и тем, что расплавленная медь хорошо растворяет газы. В процессе поглощения расплавленной медью водорода и окиси углерода, находящихся в восстановительной зоне газового пламени или в зоне угольной дуги, в сварочной ванне могут происходить различные реакции – водород активно растворяется не только в жидкой, но и в твёрдой меди. При наличии в твёрдой меди участков Сu2О, диффузионно-подвижный водород реагирует с ней. Образовавшийся водяной пар скапливается, создавая давление, которое и приводит к образованию многочисленных трещин.

Наиболее просто и легко медь сваривают аргонно-дуговой сваркой. При этом требуется тщательная очистка кромок и присадочного металла и применения чистого аргона. Сварку ведут на постоянном токе при прямой полярности. Присадка – бронза типа Бр. Х-0,3 или Бр. КМц-3-1. Во избежание растекания металла сварочной ванны, сварку ведут на графитовой подкладке без перерывов со скоростью не меньше 0,25 м/мин. Для газовой сварки применяют горелки с большим расходом ацетилена – 150-200 л/ч на 1 мм толщины листа. Медь также можно сваривать специальными электродами «Комсомолец».

Сварка латуней и бронз. При сварке латуней основные затруднения связаны с выгоранием цинка, так как температура плавления латуней обычно лежит в пределах 800-950оС, а цинк плавится при 419оС и кипит при 906оС. Часть цинка испаряется в виде паров металла и в воздухе окисляется, образуя ядовитые пары ZnО; В шве количество цинка уменьшается и образуются пустоты (поры).

Затруднения при сварке оловянистых бронз связаны с выгоранием олова и образованием двуокиси олова (SnО2), с повышением хрупкости таких бронз при нагреве, а при сварке алюминиевых бронз – с образованием тугоплавких окислов алюминия (Аl2О3). Кремнистые бронзы свариваются легко.

Как латуни, так и бронзы можно сваривать газовой и электродуговой сваркой (угольные и металлические электроды). Сварку латуней и бронз следует вести с подогревом особенно начальных участков шва (до 200 – 300оС), что ускоряет процесс и позволяет обеспечить скорость, превышающую 0,25 м/мин. Сварку производят с применением флюса на основе буры и борной кислоты. Газовую сварку латуни выполняют окислительным пламенем (О22H2 < 1,2 -1,3).

Так же как и медь, латуни и бронзы хорошо свариваются аргонно-дуговой сваркой.

Технология сварки алюминия и его сплавов.В судостроении для изготовления сварных судовых конструкций применяют алюминий и термически неупрочняемые сплавы алюминия с магнием: АМг5В и АМг6. Наиболее качественные сварные соединения алюминия и его сплавов АМГВ и АМг6 получают при контактной сварке и электродуговой сварке в среде аргона. При разработке технологии сварки алюминия и его сплавов необходимо учитывать следующее.

Сварка алюминия затрудняется образованием тугоплавкого окисла Аl2О3 ( его температура плавления 2050оС), который, образуясь на поверхности сварочной ванны, препятствует сплавлению, а также может засорять металл шва и резко снижать прочность соединения. Кроме того, алюминий имеет значительную ус адку (7%) и малую прочность при повышении температуры выше 450оС, вследствие чего расплавленный алюминий в районе шва может «провалиться» под влиянием собственного веса. Контролировать же нагрев алюминия трудно, так как он не меняет своего цвета. Поэтому иногда под шов рекомендуют подкладывать фиксирующую планку. Из-за высокой теплопроводности алюминия сварку обычно ведут с предварительным подогревом металла в начале шва (100-150оС). Свариваемые кромки перед сваркой тщательно очищают от плёнки окислов механическим способом и обезжиривают содовым раствором.

Дуговую сварку ведут на постоянном токе: при угольных электродах на прямой полярности, а пари металлических – на обратной полярности. Институт электросварки им. Патона разработал способ автоматической сварки алюминиевых сплавов под слоем флюса АН-А1, в состав которого входят КСl и Nа3АlF6.

Сварку ведут автоматами электродной проволокой диаметром 1-5 мм марки АМг6, при силе тока 300-600А и напряжении на дуге 34-48 В.

Наиболее универсальным способом сварки алюминия и его сплавов является способ аргонно-дуговой сварки неплавящимся (вольфрамовым) электродом, либо плавящимся электродом (проволока того же состава, что и основной металл). Сварку производят плавящимся электродом (проволокой) на постоянном токе при обратной полярности. При аргонно-дуговой сварке необходимо также производить тщательную зачистку свариваемых кромок деталей. В качестве защитного газа следует применять чистый аргон марок А и Б. Полуавтоматическую и ручную сварку в среде аргона плавящимся и неплавящимся электродами можно производить в любом пространственном положении. Для судостроения рекомендуются автоматы и полуавтоматы АДПГ, ПДА-300, ПШП-10 и др. Режимы сварки плавящимся электродом в среде аргона рекомендуется выбирать по таблицам работы [4].

Технология сварки титана и его сплавов.Лёгкие, высокопрочные и коррозионностойкие сплавы титана всё шире начинают применять в судостроении.

С точки зрения сварки для титана характерна очень высокая химическая активность; так при нагреве, начиная с температуры 400оС, а особенно интенсивно от 6000С, металл активно реагирует со всеми газами, кроме инертных, при температуре плавления металл активно растворяет многие газы, включая азот, водород, пары воды, окись и двуокись углерода и т.п. и реагирует с ними. В тоже время наличие небольших включений указанных газов, существенно снижает механические свойства металла и, в частности, резко ухудшает пластические свойства. Доброкачественное сварное соединение можно получить только при условии, если ограничить содержание в шве примесей азота, кислорода, водорода и углерода, обеспечив надёжную защиту сварочной ванны, металла шва и ЗТВ инертными газами (аргон, гелий), с которыми титан не вступает во взаимодействие.

В ряде случаев пригодность титана для сварки предварительно оценивают по величине расчётной твёрдости НВ, определяя её по эмпирической формуле

НВ = 40 + 310√ Оэ , 7.8.

Где Оэ – эквивалентное содержание кислорода.

Его, в свою очередь, определяют по формуле

Оэ = О2 + 2N2 + 2/3С, %, 7.9.

Где О2, N2, C - процентное содержание в титане соответственно кислорода, азота и углерода.

В том случае, если НВ < 200 и содержание водорода не превышает О,01%, титан обладает хорошей свариваемостью. Дуговая сварка титана и его сплавов в среде инертных газов может быть осуществлена неплавящимся (вольфрамовым) и плавящимся электродами. При сварке титана небольшой толщины (до 3 – 4 мм), используют обычные установки для аргонно-дуговой сварки неплавящимся электродом с подачей присадки только при толщине более 1,5 мм. Ориентировочные режимы сварки указаны в литературе [ 1, 4, 9 ]. Сварку ведут постоянным током при прямой полярности, что способствует более глубокому проплавлению металла и меньшему засорению металла шва вольфрамом электрода при его угаре.

При сварке без подачи присадки прочность соединения равна прочности основного металла. При подаче присадки её нагретая поверхность в процессе подачи успевает адсорбировать некоторое количество газов атмосферы; это приводит к снижению пластичности металла шва на 40-50%.

Доброкачественные сварные соединения можно получить только в том случае, если при сварке неплавящимся или плавящимся электродами будет обеспечена достаточная защита металла шва и околошовной зоны (нагретой свыше 6000С) не только с лицевой поверхности свариваемых листов, но и с обратной стороны шва (сварка с обратным поддувом газа). Практически это осуществляется с помощью горелок, имеющих специальные «приставки» для дополнительной подачи защитного газа и дополнительную трубную подкладку для подачи защитного газа с обратной стороны. Длина приставки на грелках может достигать 400-500 мм. В качестве защитного газа могут быть использованы аргон или гелий (Рис.7.4.)

 

В институте электросварки им. Патона был разработан процесс автоматической сварки под флюсом и ЭШС титана. Рекомендовано использовать бескислородные флюсы АН-Т1 и АН-Т2. Сварку титана под флюсом производят на обычном оборудовании, на постоянном токе (обратная полярность). На некоторых судостроительных предприятиях сварку конструкций из титана производят в специальных камерах, заполненных аргоном, соблюдая при этом все меры техники безопасности и охраны труда работающих.

Сварка разнородных материалов.При сварке разнородных материалов возникают определённые трудности:

1. При большом различии в температурах плавления (момент достижения одним материалом Тпл, другой материал находится в твёрдом состоянии);

2. Различия в коэффициентах линейного расширения α у свариваемых материалов вызывают повышенные термические напряжения;

3. Различия теплопроводности и теплоёмкости ведёт к изменению температурных полей и плюс условий кристаллизации металла шва;

4. Резкое различие в электромагнитных свойствах ведёт к неудовлетворительному формированию шва;

5. Наличие окисных плёнок, наличие различных включений в металле шва;

Решающее значение на процесс получения сварного соединения оказывает металлургическая совместимость, т.е. взаимная растворимость соединяемых металлов и в жидком и в твёрдом состоянии.

Существуют различные способы сварки разнородных материалов на примере сварки стали с медью и её сплавами (латунь, бронза):

- соединение разнородных металлов в твёрдом состоянии – сварка давлением (холодная, прессовая, трением, диффузионная, УЗС, взрывом и др.);

- соединение сваркой плавлением и наплавкой – дуговой способ (сварка в защитных газах, под флюсом, плазменно-дуговая, ЭШС, лазерная и др.);

- контактная сварка – машины типа МТП-К1;

- диффузионная сварка в вакууме;

- сварка и наплавка трением – станки типа МСТ-23, МСТ – 2001.

Сварка пластмасс.В машиностроении в настоящее время используется 1/3 всех выпускаемых в РФ полимерных материалов (подшипники скольжения, зубчатые и червячные колёса, детали тормозных устройств, кузова автомобилей, катера, яхты, протезы и др. медицинское оборудование). Вот некоторые достоинства полимеров:

- малый удельный вес ( 1 – 1,6 г/см3);

- диэлектрики;

- не подвержены электрохимической коррозии;

- высокая удельная прочность;

- плохо проводят тепло и др.

Наличие вот таких свойств, приводит к определённым трудностям при сварке пластмасс:

1. Длительная выдержка при высоких температурах вызывает термическое разложение пластмасс (деструкция);

2. Многие пластмассы ( ПМ) не имеют чётко выраженной температуры плавления;

Методы сварки пластмасс:

а) сварка газовыми теплоносителями – применяют присадочные прутки диаметром 2, 3 и 4 мм. (более пластифицированы, чем основной материал); используют электрические горелки с напряжением меньше 36 в., а также газовые горелки типа ГГП-1-56 ( Т0С выхода газов ≈ 3000С);

б) сварка нагретыми инструментами ( установки типа МСП-4);

в) сварка трением;

г) сварка в ТВЧ;

д) ультразвуковая сварка ( установки типа УПТ-14, УПК-15 и др.);

е) ядерная сварка ( состоит в облучении пластмасс потоком нейтронов – слой лития или бора облучают нейтронами).

Охрана труда при проведении сварочных работ.При сварке, а также при газопламенной обработке имеются профессиональные опасности и вредности, а также источники возможного травматизма, действие которых необходимо учитывать при организации работ. Все рабочие должны быть тщательно проинструктированы безопасным методам выполнения работ. Приводим специфические источники опасности при электрической сварке.

Источники электрического тока.Кожный покров человека, в особенности в сухом состоянии, оказывает значительное сопротивление прохождению тока. Расчётное сопротивление человека – 1000 Ом. Безопасным для жизни, вызывающим болезненное ощущение считается ток 0,03 – 0,05 А. Следовательно предельным безопасным напряжением можно считать: Uпред = I R = 0,05 · 1000 = 50 В.

Однако при влажной коже сопротивление резко снижается и даже при таком напряжении ток, протекающий через тело человека, может превысить безопасную величину.

Токоведущие части оборудования – кабели и ручки электрододержателей должны быть изолированы.

Для электросварочных установок напряжение холостого хода (Uхх) допускается до 80 В. Обязательно установки должны быть заземлены.

Нагретый металл, капли и брызги металла. Одежда сварщика должна быть из плотной негорючей ткани, не имеющей складок, открытых карманов или разрезов, куда могли бы попасть брызги и расплавленные капли. При сварке обязательное ношение головного убора и плотных брезентовых рукавиц. Вблизи сварки не должно быть горючих материалов, красок, стружки или баллонов с газами (ацетилен, кислород и др.).

Пыль и вредные газы.Образуются при горении дуги и расплавлении металла, которые могут попасть в организм человека. Главным средством борьбы с запылённостью при сварке является устройство вытяжной вентиляции – общеобменной и местной.

Лучистая энергия, выделяемая дугой.В спектре её содержаться инфракрасные видимые и ультрафиолетовые лучи. Яркость света сварочной дуги превышает в 16000 раз максимальную яркость допускаемую для незащищённого глаза. Поэтому при сварке необходимо пользоваться стеклянным светофильтром с очень малой прозрачностью.

Охрана труда работающего персонала является важной обязанностью руководителей сварочного производства.