Часть III. ОРГАНИЧЕСКАЯ ХИМИЯ

Аргон

Неон

Гелий

Глава 19. ЭЛЕМЕНТЫ VIII ГРУППЫ

Хлор

Фтор

Глава 18. ЭЛЕМЕНТЫ VII ГРУППЫ

Сера

Сера по электро­отрицательности уступает только галогенам, кислороду и азоту. Наиболее устойчивы степени окисления серы –2, +2, +4, +6.

Сера весьма распространенный на Земле элемент, она содержится в нефти, углях, природных газах. Сера – биогенный элемент, входит в состав белков.

Известны соединения серы почти со всеми элементами. В приро­де сера встречается в виде сульфидных (ZnS, HgS, PbS, Cu2S, FeS2, CuFeS2 и др.) и сульфатных (Na2SO4∙10H2O, СаSO4∙2Н2О и др.) мине­ралов, а также в самородном состоянии.

Простые вещества. S (сера) – типичный неметалл, существует в двух аллотропических модификациях (ромбическая α-сера, моноклинальная β-сера) и в аморфной форме (пластическая сера). В кристаллическом состоянии построена из неплоских циклических молекул S8. Не реагирует с жидкой водой, иодом. В воде сера практически нерастворима. Окисляется концентрированной серной и азотной кислотами, подвергается дисмутации в растворах щелочей и гидрата аммиака. Реагирует с металлами, водородом, кислородом, галогенами.

S + 2H2SO4(конц., кип.) = 3SO2↑ + 2H2O

S + 6HNO3(конц., кип.) = H2SO4 + 6NO2↑ + 2H2O

4S + 6NaOH(конц., кип.) = Na2SO3S + 2Na2S + 3H2O

S + Cl2 = SCl2

3S + 2Al = Al2S3

Получение и применение серы.Основной способ получения серы – выплавка их самородных руд. Сера применяется в производстве серной кислоты, для вулканизации каучука, как инсек­тицид в сельском хозяйстве и т. д.

Соединения серы (–II). Важнейшим характеристическим соединением серы –2 является сероводород H2S (сульфид водорода) – бесцветный газ с неприятным запахом, очень токсичен. Его водный раствор – слабая сероводородной кислота. Для ее получения обычно используют реакция вытеснения H2S из сульфида железа хлороводородной кислотой:

FeS + 2HCl = FeCl2 + H2S

Соли сероводородной кислоты – сульфиды, как производные низшей степени окисления серы, они проявляют восстановительные свойства. В зависимости от условий продуктами окисления сульфидов могут быть S, SO2 и Н2SO4:

2КMn+7O4 + 5Н2S–2 + 3Н2SO4 = 2Mn+2SO4 + 5S0 + К2SO4 +8Н2О

Н2S–2 + 4Br20 + 4Н2О = Н2S+6O4 + 8HBr–1

Сульфиды металлов разнообразны, многие из них являются соединениями переменного состава.

Персульфиды. В персульфидах (полисульфидах) типа Me2+1Sn–2 сера образует гомоцепи, так например: Na–S–S–S–Na.

Получены многочисленные персульфиды водорода типа Н2Sn (где п = 2–23), называемые многосернистыми водородами или сульфанами.

Широко распространенный минерал пирит FeS2 представляет собой персульфид железа (II).

Соединения серы (IV).Степень окисления +4 у серы проявляется в тетрагалогенидах SHal4, оксодигалогенидах SOHal2, диоксиде SO2, также в отвечающих им анионах. Химический характер бинарных соединений серы (IV) кислотный.

В промышленности диоксид серы SO2 (сернистый газ) получают сжиганием серы и обжигом пирита:

4FeS2 + 11O2 = 8SO2↑ + 2Fe2O3

Диоксид серы хорошо растворяется в воде. Водный раствор SO2 называют сернистой кислотой H2SO3. Соли сернистой кислоты – сульфиты и гидросульфиты, получают взаимодействием SO2 с щелочами или растворимыми карбонатами металлов:

NaOH + SO2 = NaHSO3; 2NaOH + SO2 = Na2SO3

В силу нестабильности степени окисления +4 SO2, H2SO3 и сульфиты функционируют как восстановители. Даже твердые сульфиты при хранении медленно окисляются до сульфатов:

2Na2SO3 + O2 = 2Na2SO4

При повышенной температуре и в присутствии катализатора SO2 окисляется до оксида серы (VI):

2SO2 + О2 = 2SO3

При взаимодействии же с более сильными восстановителями производ­ные серы (IV) проявляют окислительные свойства:

SO2 + 2H2S = 3S + 2H2O

При нагревании сульфиты диспропорционируют:

4Na2SO3 = 3Na2SO4 + Na2S

Соединения серы (VI). Степень окисления серы +6 проявляется в соединениях с наиболее электроотрицательными элементами: в гексафториде SF6, триоксиде SO3, оксо- и диоксодигалогенидах SOF4, SO2Hal2, а также в анионных комплексах SO3Hal, SO42–.

Большинство оксогалогенидов и SO3 легко гидролизуется, образуя кис­лоты:

SO3 + Н2О = Н2SO4

SO2Cl2 + 2Н2О = Н2SO4 + 2НCl

Водный раствор тетраоксосульфата (VI) водорода Н2SO4 – сильная серная кислота. Взаимодействие Н2SO4 с водой сопровождается выделением большого количества теплоты за счет образования гидратов, поэтому смешивать кон­центрированную серную кислоту с водой следует очень осторожно, вливая серную кислоту тонкой струйкой в воду, а не наоборот.

Концентрированная серная кислота – сильный окислитель, в зависимости от силы восстановителя она может быть восстановлена до SO2, S и H2S.

Серная кислота используется в производстве кислот, щелочей, солей, минеральных удобрений, органическом синтезе, травления металлов, очистки нефтяных масел и продуктов коксохимической промышленности и т. д.

Большинство сульфатов хорошо растворимы в воде (кроме BaSO4, SrSO4, PbSO4), из водных растворов выделяются в виде кристаллогидратов. Соединения типа CuSO4∙5H2O, FeSO4∙7Н2O называются купоросами.

Сульфаты щелочных и щелочно-земельных металлов термически стойки; сульфаты менее активных металлов при нагревании разлагаются, так:

ZnSO4 = ZnO +SO3

Ag2SO4 = 2 Ag + SO2↑ + O2

При кипячении раствора сульфита натрия с порошком серы образуется сульфидотриоксосульфат (VI) натрия:

Na2S+4O3 + S0 = Na2S+6O3S–2

Свойства сульфидотриоксосульфатов (тиосульфатов) обусловлива­ются присутствием атомов серы в двух разных степенях окисления (+6 и –2). Наличие атома серы со степенью окисления –2 определяет восстановительные свойства SO3S2–-иона:

Na2SO3S–2 + Cl20 + Н2О = Na2SO4 + S0↓ + 2HCl–1

При растворении SO3 в концентрированной серной кислоте образуется целая серия полисерных кислот: H2S2O7 (дисерная кислота), H2S3O10 (трисерная кислота) и др. Смесь серной и полисерных кислот – олеум.

Взаимодействием хлорсульфоновой кислоты с пероксидом водорода получают пероксосерные кислоты:

2HSO3Cl + H2O2(безводн.) = H2S2O6(O2) + 2HCl

 

Подгруппа селена(селен, теллур, полоний)

 

Степень окисления в соединениях у селена и его аналогов –2, +2, +4, +6.

Селен и теллур – рассеянные неметаллы, а полоний – редкий металл. Собственные минералы селена и теллура встречаются редко. Чаще всего Se и Те сопутствуют самородной сере и в виде селенидов и теллуридов присутствуют в сульфидных минералах меди, цинка и свинца. Полоний содержится в урановых и ториевых минералах как продукт распада радиоактивного ряда урана.

Многие соедине­ния селена и теллура токсичны. Полоний еще опаснее ввиду его ра­диоактивности.

Простые вещества. Se (селен) – типичный неметалл. Существует в виде модификаций: устойчивая – серый (металлический) α-Se и неустойчивая – красный β-Se, а также известен аморфный Se (окраска серая или красная), в особых условиях получен темно-желтый коллоидный селен. Не реагирует с жидкой водой, хлороводородом, иодом. Реагирует с концентрированными серной (кроме β-Se) и азотной кислотами, щелочами, водородом, галогенами, металлами.

Se + 2H2SO4(конц., кип.) = SeO2↓ + 2SO2↑ + 2H2O

Se + 2Cl2 = SeCl4

Se + О2 = SeО2

Se + Н2 = Н2Se

3Se + 2Al = Al2Se3

Те (теллур) – серый металл с металлическим блеском. Не реагирует с водой, хлороводородом, серой, азотом. Реагирует с концентрированными кислотами-окислителями и щелочами, атомным водородом, кислородом, галогенами, металлами.

Ро (полоний) – мягкий серебристо-белый металл. Радиоактивен. Не реагирует с водой, гидратом аммиака, азотом. Не образует катионов в растворе. Проявляет окислительно-восстановительные свойства; реагирует с кислотами, щелочами при спекании, кислородом, атомным водородом, галогенами, металлами. Полоний, в отличие от Se и Те, реагирует с соляной кислотой как типичный металл:

Ро + 2НCl = РоCl2 + Н2

Получение и применение.Селен и теллур получают из отходов цветной металлургии (при электролитическом рафинировании меди с медного анода осаждается шлам, который наряду с благородными металлами содержит селен и теллур) и из отходов производства серной кисло­ты (пыль каналов и пылевых камер содержит селен и теллур). При извлечении селена и теллура из этих источников их окисляют и образующиеся при этом SeO2 и ТеO2 разделяют и восстанавливают диоксидом серы:

SeO2 + 2SO2 + 2H2O = Se + 2H2SO4 или SeO2 + 2SO2 = Se + 2SO3

Полоний получают в атомных реакторах бомбардировкой висмута нейтронами.

Как полупроводники селен и теллур используются для изготовле­ния фотоэлементов оптических и сигнальных приборов. Кроме того, селен используют для получения стекол рубинового цвета и др. Соединения селена и теллура используются в химическом синтезе, в частности, для получения раз­нообразных селен- и теллурорганических соединений. Изотоп 210Ро применяют как источник α-частиц. Селениды и теллуриды – полупроводники.

Соединения селена, теллура и полония (–II). У селена, теллура и полония степень окисления –2 проявляется соответственно в селенидах, теллуридах и полонидах – соединениях с менее электроотрицательны­ми, чем они сами, элементами (проявляется аналогия элементов селена и теллура с кислородом и серой).

Селенид и теллурид водорода можно получить действием воды или кислот на селениды и теллуриды некоторых металлов:

Al2Те3 + 6Н2О = 2Al(ОН)3 + 3Н2Те↑

Растворы в воде Н2Sе и Н2Те – слабые кислоты (селеноводородная и теллуроводородная).

Соединения селена (IV), теллура (IV) и полония (IV). Степень окисления +4 селена, теллура и полония проявляется в диоксидах ЭО2, тетрагалогенидах ЭНаl4, оксодигалогенидах ЭОНаl, а также в соответствующих им анионных комплексах, например типа ЭО32–, ЭНаl62–. Для полония (IV), кроме того, характерны солеподобные сое­динения типа Ро(SO4)2, Ро(NO3)4.

Диоксиды селена и его аналогов ЭО2 – полимерные соединения (в отличие от серы). В ряду SеO2–ТеO2–РоO2 наблюдается ослабление кис­лотных свойств. Так, SеO2 легко растворяется в воде, образуя селенис­тую кислоту Н2SеО3:

SеO2 + Н2О = Н2SеО3

ТеО2 в воде не растворяется, но взаимодействует с раство­рами щелочей. РоО2 с щелочами реагирует только при сплавлении, а с кислотами взаимодействует как оснóвный оксид:

РоО2 + 2Н24 = Ро(SО4)2 + 2Н2O

Тетрагалогениды образуются при взаимодействии простых веществ. Будучи кислотными соединениями, ЭНаl4 довольно легко гидролизуются и взаимодействуют с оснóвными галогенидами:

SеCl4 + 3Н2О = Н2SеО3 + 4НCl

2КI + ТеI4 = К2[ТеI6]

2КCl + РоCl4 = К[PoCl6]

Соединения селена (VI), теллура (VI) и полония (VI). Для селена (VI) и теллура (VI) известны бинарные соединения с кислородом и фтором, а также соответствующие им анионы. Соединения полония (VI) неустойчивы.

SeO3 получают действием на селенаты (VI) триоксидом серы, а ТеО3 – обезвоживанием гексаоксотеллурата (VI) водорода:

К2SеО4 + SO3 = К24 + SеO3; Н6ТеО6 = ТеО3 + 3Н2О

SeO3 энергично взаимодействует с водой, образуя сильную селеновую кислоту Н2SеО4:

SeO3 + Н2О = Н2SеО4

Н2SеО4 – более сильный окислитель, чем Н24, так, она окисляет концентрированную хлороводородную кислоту и за счет выделения атомного хлора – смесь Н2SеО4 и HCl – сильней­ший окислитель, которая растворяет золото и платину:

Н2+6О4 + 2НCl ↔ Н2+4О3 + Cl2↑ + Н2О

Слабая теллуровая кислота Н6ТеО образуется при гидролизе гексафторида теллура TeF6:

TeF6 + 6H2O = Н6ТеО + 6HF

Окислительные свой­ства у Н6ТеО выражены слабее, чем у Н2SеО4.

Подгруппа хрома (хром, молибден, вольфрам)

 

Характерные степени окисления хрома +3 и в меньшей мере +6; для молибдена и вольфрама наиболее характерна высшая степень окисления +6. Возможны также соединения, где хром и его аналоги проявляют степени окисле­ния 0, +1, +2, +4, +5.

В природе хром и вольфрам находятся в виде соединений с кисло­родом, а молибден – с серой. Наиболее распространенными минералами являются FeО∙Cr2О3хромистый железняк, PbCrO4крокоит, MoS2молибде­нит, CaWО4шеелит, (Fe, Mn)WО4вольфрамит.

Наличие в почве следов молибдена необходимо для каталитической фиксации атмосферного азота растений, особенно у видов семейства бобовых.

Простые вещества. Cr (хром) – серый, очень твердый, тугоплавкий металл. На воздухе покрыт тонкой оксидной пленкой. Не реагирует с холодной водой, щелочами, гидратом аммиака. Пассивируется в концентрированной и разбавленной азотной кислоте, «царской водке». Реагирует с серой, азотом, разбавленными хлороводородной и серной кислотами, расплавами KClO3, KNO3. Медленно окисляется кислородом воздуха при нагревании, быстро – галогенами.

Мо (молибден) – светло-серый, достаточно твердый, пластичный металл. Устойчив на воздухе. Не реагирует с водой, разбавленными кислотами, щелочами, гидратом аммиака, водородом, иодом. Пассивируется дымящей азотной кислотой. Реагирует с водяным паром, концентрированными серной и азотной кислотами, при сплавлении – со щелочами на воздухе, кислородом, галогенами, серой, моно- и диоксидом углерода, сероводородом.

W (вольфрам) – светло-серый, очень твердый и наиболее тугоплавкий из всех металлов. Устойчив на воздухе. Мало реакционноспособный; не реагирует с водой, разбавленными и концентрированными кислотами (кроме смеси азотной и фтороводородной кислот), щелочами, гидратом аммиака, водородом, иодом. Реагирует с кислородом, галогенами, серой, углеродом, сероводородом, моно- и диоксидом углерода.

Получение и применение. В чистом виде хром получают с помощью алюмотермии; молибден и вольфрам методом водородного восстановления из оксидов.

Cr2O3 + 2Al = 2Cr + Al2O3

MoO3 + 3H2 = Mo + 3H2O

WO3 + 3H2 = W + 3H2O

В металлургии при карботермическом восстановлении совместно с железными рудами получают обычно феррометаллы (феррохром, ферромолибден, ферровольфрам), которые ис­пользуются для получения высококачественных специальных сталей.

Хром легко пассивируется и используется в качестве гальванических защитных покрытий и для получения коррозионно стойких сталей. Молибден применяют для изготовления химической аппаратуры, вольфрам – в электротехнической промышленности (в частности, для ламп накаливания). Молибден и вольфрам используют в качестве катализаторов.

Из производных хрома и его аналогов применяются главным обра­зом соединения самого хрома. Так, Cr2O3 используется для приготов­ления красок и как катализатор, CrО3 – для электролитического получения хрома и хромированных изделий.

Соединения хрома (0), молибдена (0), вольфрама (0).Для хрома и его аналогов известны гексакарбонилы Э(СО)6 – бесцветные легко возгоняющи­еся твердые вещества, хорошо растворимые в органических растворителях. Термическим разложением карбонилов получают чистейшие металлы. Кроме того, их используют в химическом синтезе. Они очень токсичны.

Соединения хрома (II). Известно лишь небольшое число соединений, в частности, дигалогениды CrНаl2, CrO, Cr(ОН)2, которые проявляют практически лишь оснóвные свойства, взаимодействуя с кислотами:

Cr(OH)2 + 2HCl + 4Н2O = [Cr(Н2О)6]2+­Cl2

Дигалогени­ды довольно легко поглощают газообразный аммиак, образуя аммиакаты, так: Cr(OH)2 + 6NH3 = [Cr(NH3)6]Cl2

Соединения Cr (II) получают восстановлением соединений Cr (III), например водородом в растворе в момент выделения, или нагреванием в атмосфере Н2. Дигалогениды можно получить также взаимодействием металла с газо­образными галогеноводородами (при 600–700 °С).

Кластерные соединения. Для d-элементов характерны соединения, в которых содержатся группировки из двух и большего числа непосред­ственно связанных друг с другом атомов d-элементов, такие группировки называют кластерами. Известные в настоящее время кластерные соединения делят на два больших класса: 1) низшие галогениды и оксиды и 2) многоядер­ные карбонилы.

Так, молекуле МоСl2 отвечает формула [Мо6Cl8]Cl4 с ковалентными связями Мо–Мо. Аналогичное шестиядерное строение кластеров имеют МоBr2, WCl2, WBr2. К двухъядерным кластерам отно­сится ион [Мо2Сl8]4+.

Соединения кластерного типа также весьма характерны для Nb, Ta, Tc и Re.

Соединения хрома (III).Степень окисления хрома +3 является наи­более устойчивой и проявляется в галогенидах CrHal3, солях ряда кислородсодержащих кислот, оксидах Cr2О3, FeCr2O4, гидроксиде Cr(OH)3, катионных и анионных комплексах.

Оксид хрома (III) Cr2О3 – порошок темно-зеленого цвета, нерастворимый в воде, кислотах и растворах щелочей.

(NH4)2Cr2O7 = Cr2O3 + N2↑ + H2O

При высокой температуре проявляет амфотерные свойства. При сплавлении Cr2О3 со щелочами и соответствующими основ­ными оксидами образуются оксохроматы (III), называемые хромитами:

2КОН + Cr2О3 = 2КCrО2 + Н2О

Осаждаемый из растворов серо-голубой гидроксид Cr(ОН)3­­ имеет переменный состав Cr2О3nН2О.

Cr2(SO4)3 + 6NaOH(разб.) = Cr(OH)3↓ + 3Na2SO4

Гидроксид хрома (III) обладает амфотерными свойствами:

Cr(ОН)3 + 3HCl + 3H2O = [Cr(Н2О)6] Cl3 (оснóвные свойства)

Cr(ОН)3 + 3NaОН = Na3[Cr(ОН)6] (кислотные свойства)

Соединения хрома (VI), молибдена (VI), вольфрама (VI). Степень окисления +6 у хрома и его аналогов проявляется в галогенидах, оксогалогенидах,оксидах и отвечающих им анионных комплексах.

Триоксид хрома CrО3 в отличие от МоО3 и WO3 легко растворяется в воде, образуя сильную хромовую кислоту Н2CrO4:

Н2О + CrО3 = Н2CrO4

Кислотная природа МoО3 и WO3 проявляется при растворении в щелочах:

2КОН + ЭО3 = К2ЭО4 + Н2О

Для Mo (VI) и W (VI) известны многочисленные производные полимерных оксоанионов весьма сложного состава и строения. Способность к полимеризации иона CrО2– менее выражена, тем не менее известны, например, К2Cr2О7 – дихромат, К2Cr3О10 – трихромат, CrCr4О13 – тетрахромат. Полихроматы образуются при действии кислот на хроматы, так:

2CrО4 + 2Н2SO4(разб.) = К2Cr2О7 + K2SO4 + Н2O

2Cr2О7 + 2Н2SO4(разб.) = 2К2Cr3О10 + K2SO4 + Н2O и т. д.

При действии раствора концентрированной серной кислотой выделяются темно-красные кристал­лы триоксида:

К2CrО4 + H24 = CrО3 + K24 + Н2О

Если же действовать на растворы полихроматов щелочью, процесс идет в обратном направлении и получается снова хромат. Равновесие очень подвижно.

Из оксохроматов (VI) наибольшее значение имеют соли Na+ и К+, получаемые сплавлением Cr2О3 или хро­мистого железняка с соответствующими карбонатами на воздухе.

Соединения хрома (VI) – сильные окислители, переходят в окисли­тельно-восстановительных процессах в производные Cr (III) в зависимости от среды, так:

в нейтральной – Na2Cr2О7 + 3(NH4)2S + Н2О = 2Cr(ОН)3↓ + 3S + 6NH3 + 2NaОH

в кислой – Na2Cr2О7 + 3Na2SO3 + 4Н2SO4 = Cr2(SO4)3 + 4Na2SO4 + 4Н2O

в щелочной – Na2Cr2О7 + 3(NH4)2S + 4NaОН + Н2О = 2Na3[Cr(OH)6] + 3S + 6NH3

Окислительная способность соединений хрома (VI) используется в химическом анализе и синтезе. Окислительные свойства производных Мо (VI) и W (VI) проявляются лишь при взаимодействии с наиболее сильными восстановителя­ми, например, с водородом в момент выделения.

 

 

VIIА-группа (галогены): фтор F 2s22p5, хлор Cl 3s23p5 и элементы подгруппы брома – бром Br 3d104s24p5, иод I 4d105s25p5, астат At 5d106s26p5.

VIIВ-группа (подгруппа марганца): марганец Mn 3d54s2, технеций Tc 4d55s2, рений Re 4f145d56s2.

 

Фтор – самый электроотрицательный элемент системы (4,0), неметалл. В химии фтора представлено только две степени окисления: 0 и –1. Поэтому он только окислитель, восстановителем быть не может.

Довольно распространен в природе. Наиболее важными минералами фтора являются плавиковый шпат (флюорит) CaF2, криолит Na3AlF6 и фторапатит 3Ca3(PO4)2∙CaF2. Фтористые соединения содер­жатся в организме человека (в основном в зубах и костях).

Простое вещество. F2 (дифтор) – светло-желтый газ с резким специфическим запахом. Растворяется в жидком HF.

Фтор – сильнейший окислитель, химически взаимодействует почти со всеми веществами, в том числе и тяжелыми благородными газами.

X2 + F2 = XeF2

С кислородом фтор реагирует при низких температурах в электрических разрядах с образованием фторидов кислорода. Углерод, кремний, фосфор, сера и другие неметаллы, а также большинство металлов воспламеняются в атмосфере фтора при 20–300°С с образованием соответствующих фторидов. Фтор при обычных условиях энергично реагирует с водой, кислотами, щелочами, аммиаком.

Н2О + F2 = 2НF + О0

Получение и применение фтора. Свободный фтор получа­ют электролизом его расплавленных соеди­нений. Контейнеры и изделия для работы с фтором изготавливают из нержавеющей стали, никеля, меди или алюминия (образуются защитные пленки из фторидов соответствующих металлов, предохраняющие от коррозии).

Фтор применяют для разде­ления изотопов урана диффузионным мето­дом, для синтеза раз­личных хладагентов и полимерных материалов (фторопластов), отличающихся высокой химической стойкостью. Жидкий фтор и ряд его соединений применяют в качестве окислителей ракетного топлива.

Соединения фтора (–I). Многие фториды металлов в низких степенях окисления получают действием раствора НF на оксиды, гидроксиды, карбонаты и пр., например:

3НF + Al(ОН)3 = AlF3 + 3H2O

Большинство кристаллических фторидов нерастворимо в воде. Хорошо растворяются лишь фториды s-элементов I группы (кроме Li), а также AgF, HgF2, SnF2 и некоторые другие. По химической природе ионные фториды являются оснóвными соединениями, а ковалентные фториды – кислотными.

2NaF + SiF4 = Nа2[SiF6]

Амфотерные фториды взаимодействуют как с оснóвными, так и с кислот­ными фторидами:

2КF + ВеF2= К2[ВеF4]

ВеF2 + SiF4 = Ве[SiF6]

Комплексные фториды весьма разнообразны.

Оснóвные фториды при гидролизе создают щелочную среду, а кислотные фториды – кислотную:

SiF4 + 3H2O = H2SiO3 + 4НF

Водный раствор HF – фтороводородная (плавиковая) кислота, представляет собой кислоту средней силы в отличие от остальных сильнейших галогеноводородных кислот (из-за склонности молекул к ассоциации за счет водородных связей). В промышленности фтороводород HF получают реакцией вытеснения из CaF2 концентрированной серной кислотой.

CaF2 + H2SO4(конц.) = CaSO4 + 2HF

Фтороводородную кислоту хранят не в стеклянной посуде (т. к. она взаимодействует с SiO2), а в сосудах из свинца, каучука, полиэтилена или парафина. Она токсична, при попа­дании на кожу вызывает плохо заживающие болезненные язвы.

 


 

Хлор характеризуется меньшей неметаллической активностью по сравнению с фтором. При взаимодействии атомов хлора между собой и с другими элементами хлор проявляет степени окисления –1, 0, +1, +3, +5, +6 и +7.

Хлор относится к довольно распространенным на Земле элементам; основные минералы: каменная соль NаCl, сильвинит NаCl∙КCl, карналлит КСl∙MgSO4∙3H2O. Кроме того, в огромном количестве хлориды содержатся в морской воде, входят составной частью во все живые организмы и пр.

Простое вещество. Cl2 (дихлор) – желто-зеленый ядовитый газ с резким раздражающим запахом, термически устойчив. При насыщении хлором охлажденной воды образуется твердый клатрат (Cl2∙8H2O). Хорошо растворяется в воде, в большей степени подвергается дисмутации («хлорная вода»). Растворяется в CCl4, SiCl4 и TiCl4. Реагирует со щелочами. Сильный окислитель; энергично реагирует с металлами и неметаллами (за исключением О2, N2 и благородных газов), легко окисляет многие сложные соединения. Восстановительные свойства хлор прояв­ляет лишь при взаимодействии с фтором. Хлор хранят и транспортируют в стальных баллонах, т. к. при обычных условиях хлор не реагирует с железом.

Получение и применение хлора. В лаборатории хлор получают химическим окислением концентрированной хлороводородной кислоты; в технике – электролизом водного раствора NаCl и как побочный продукт при получении натрия электролизом расплава NаCl. Хлор применяют для стерилизации питьевой воды, используют в качестве окислителя в разнообразных отраслях химической промышлен­ности. Важна его роль в металлургии цветных металлов.

Хлороводородная кислота HCl широко применяется в технике, медицине, лабораторной практике; она входит в состав желудочного сока.

Берто­летову соль КСlO3 используют в производстве спичек и смеси для фейервер­ков; в смеси с восстановителями образуют легко взрывающиеся составы.

Соединения хлора (–I). Хлориды получают хлорированием простых веществ и оксидов хлором или сухим хлоридом водорода:

2Fе + 3Cl2 = 2FеCl3

Fе + 2НCl(г) = FеCl2 + Н2

TiO2 + 2Cl2 + С = TiCl4 + СО2

Оснóвные хлориды (хлориды металлов или ионные хлориды) гидролизу практически не подвергаются, а кислотные (хлориды неметаллов или ковалентные хлориды) гидролизуются полностью и необратимо с образованием кислот:

SiCl4 + 3Н2О = Н2SiO3 + 4НCl

Большинство хлоридов металлов хорошо растворимо в воде (за исключением AgCl, CuCl, AuCl, TlCl и PbCl2).

В промышленности хлорид водорода HCl получают синтезом из простых ве­ществ: Н2 + Cl2 = 2НCl, в лаборатории: NaCl(т) + Н2SO4(конц.) = Na2SO4 + 2НCl↑

При растворении НCl в воде образуется хлороводородная (соляная) кислота.

При действии сильных окислителей или при электролизе хлориды проявляют восстановительные свойства.

МnО2 + 4НCl = МnCl2 + Cl2↑ + 2Н2О

Соединения хлора (I). Степень окисления хлора +1 проявляется во фториде ClF, оксиде Cl2O и нитриде Cl3N, а также в соответствующих им анионах [СF2], [СlO] и [ClN]2–. Бинарные соединения хлора +1 имеют кислотный характер, например:

Cl2O + НОН = 2НClО

Производные оксохлорат(I)-аниона СlO, называемые гипохлоритами, неустойчивы и получают растворением хлор в охлажденных растворах щелочей:

KOH(хол.) + Сl2 ↔ КCl + КClO + Н2О

Оксохлорат (I) водорода НСlO – слабая хлорноватистая кислота, существующая только в разбавленных растворах.

Сl2 + НOH ↔ НCl + НClO

Производные хлора (I) – сильные окислители. Наибольшее практическое применение (как отбеливающее средство, средство для дегазации) имеет гипохлорит кальция Са(ClО)2 и хлорная известь (гипохлорит и хлорид кальция).

Соединения хлора (III). Степень окисления хлора +3 проявляется в три-фториде ClF3 и тетрафторохлорат(III)-анионе [ClF4], а также в диоксохлорат(III)-анионе [ClO2].

Производные диоксохлорат(III)-аниона ClO2 называются хлоритами. Диоксохлорат(III) водорода НClO2 хлористая кислота средней силы, в свободном состоянии не получена, в водном растворе быстро разлагается. При нагревании хлориты диспропорционируют или разлагаются:

3NaCl+3O2 = NaCl–1 + 2NaCl+5O3

NaClO2 = NaCl + O2

Соединения хлора (IV). Степень окисления хлора +4 проявляется в его оксидах СlO3 и Cl2O6.

2КClО3(насыщ.) + Н2SO4(конц.) + SO2 = КНSO4 + 2ClO2

Соединения хлора (V). Степень окисления хлора +5 проявляется в соединениях пентафторид ClF5, оксотрифторид СlOF3, диоксофторид СlO2F, производные триоксохлорат(V)-аниона [СlO3] и др.

Производные СlO3 называют хлора­тами. Наибольшее практическое значение имеет хлорат калия КСlO3 (бертолетова соль).

6КОН(гор.) + 3Cl2 = 5КCl + КСlO3 + 3Н2О

Триоксохлорат (V) водорода НСlO3 – сильная кислота, называемая хлорноватой, существует в растворе (до 40%). По свойствам напоминает азотную кислоту.

При нагревании хлораты (V) – сильные окислители, диспропорционируют или разлагаются (в присутствии катализатора):

4КСlO3 = 3КClО4 + КCl

2КСlO3 = 2КCl + 3О2

Соединения хлора (VII). Высшая степень окисления хлора +7 проявляется в его оксиде, ряде оксофторидов (ClO3F, ClO2F3, ClOF5) и отвечающих им анион­ных комплексах.

Тетраоксохлораты (VII) (перхлораты) довольно многочисленны. Тетраоксохлорат (VII) водорода НСlO4 – бесцветная жидкость, разлагающаяся при нагревании или при стоянии. Водный раствор является хлорной кислотой – одна из наиболее сильных кислот. Ее получают действием концентрированной серной кислоты на КClО4:

КClО4 + Н2SO4 = НClO4 + КНSO4

Перхлораты в основном применяются в производстве взрывчатых веществ, в реактивной технике.

 

Подгруппа брома(бром, иод, астат)

Элементы подгруппы брома проявляют степени окисления –1, +1, +3, +5 и +7, из них наиболее устойчивы –1 и +5. Неметаллы, но с увеличе­нием числа заполняемых электронных слоев атомов неметаллические признаки в ряду Br–I–At ослабевают.

Бром и иод – довольно распространенные на Земле элементы, содержатся в морской воде, в водах буровых скважин нефтяных месторождений. Собственные минералы обоих элементов редки и практического значения не имеют. Бром обычно сопутствует хлору в его калийных минералах. Некоторые морские водоросли содержат значительные количества иода. Астат в природе практически не встречается; ничтожные количества его обнаруже­ны в продуктах естественного радиоактивного распада урана и тория.

Простые вещества. Br2 (дибром) – красно-коричневая жидкость, а ее пар – желто-бурого цвета с резким раздражающим запахом. Умеренно растворяется в воде и в небольшой степени подвергается дисмутации («бромная вода»), в присутствии бромидов и хлоридов щелочных металлов растворимость повышается. Сильный окислитель. Реагирует при обычных условиях со щелочами, многими металлами и неметаллами. Непосредственно не реагирует с кислородом, азотом, углеродом благородными газами. Образует соединения с другими галогенами.

I2 (дииод) – фиолетово-черное твердое вещество с металлическим блеском, легко возгоняется, образуя фиолетовые пары. Плохо растворим в воде, в ничтожно малых количествах подвергается дисмутации. Хорошо растворяется в органических раство­рителях, в водных растворах иодидов металлов (за счет комплексообразования, «иодная вода»). Слабый восстановитель и окислитель. Реагирует с концентрированной серной и азотной кислотой, «царской водкой», металлами, неметаллами, щелочами, сероводородной кислотой. Со многими элементами иод непосредственно не взаимодействует, а с некоторыми реагирует только при повышенных температурах (водород, кремний, многие металлы). Образует соединения с другими галогенами.

At (астат) – твердое серое вещество с металлическим блеском. Радиоактивен. Не растворяется в воде и не реагирует с ней. Растворяется в CCl4. Реагирует с кислотами-окислителями, типичными восстановителями и окислителями.

Получение и применение. Бром и иод получают, окисляя бромиды и иодиды:

2NаЭ + МnО2 + 2Н2SO4 = Э2 + МnSO4 + Nа2SO4 + 2Н2О

При получении брома в качестве окислителя часто используют хлор:

2KBr + Cl2 = 2KCl + Br2

Астат получают бомбардировкой висмута α-частицами или тория протонами на ядерном ускорителе.

Соединения брома и иода в основном применяются в производстве лекарств, для синтезов и в химическом анализе.

Соединения брома (I), иода (I), астата (I). Бром, иод и астат с менее электроотрицательными, чем они сами, элементами образуют бромиды, иодиды, астатиды. В отличие от фторидов броми­ды и иодиды известны главным образом для элементов низких степеней окисления. Бромиды и иодиды щелочных и щелочно-земель­ных металлов преимущест­венно являются ионными соединениями; а неметаллических элементов – преимущественно ковалентными. Большинство бромидов и иодидов хорошо растворяется в воде (кроме AgЭ и РbЭ2).

Бромид водорода HBr и иодид водорода HI при обычных условиях – газы, хорошо растворимы в воде. Их растворы – сильные кислоты, называемые соответственно бромоводородной и иодоводородной. В ряду НF–НCl–НBr–НI сила кислот увеличивается, что в основном определяется уменьшением прочности связи Н–Наl, и в этом же ряду возрастает восстановительная активность.

Так, НF и НCl с концентрированной H2SO4 не взаимодействуют; НBr восстанавливает H2SO4 при нагревании до SO2, а НI – до SO2, S и даже H2S:

8НI(г) + H2SO4(ж) = 4I2(к) + Н2S(г) + 4Н2О(ж)

НBr и НI получают гидролитическим разложением бромидов и иодидов фосфора (III), а не действием серной кислоты на их соли (в отличие от фторида и хлорида водорода).

Соединения брома (I), иода (I) и астата (I). Степень окисления +1 у брома и его аналогов проявляется в соединениях с более электроот­рицательными галогенами и кислородом (BrF, BrCl, Br2O, IF, ICl, IBr и др.). Бинарные соединения брома (I) и иода (I) являются кислотными соединениями.

Br2O + НОН = 2НВrО

ICl + НОН = HIO + НCl

KCl + ICl = K[ICl2]

Производные BrО и IO(гипобромиты, гипоиодиты) по свойствам и спо­собам получения подобны гипохлоритам.

Оксобромат (I) водорода НВrО и оксоиодат (I) водорода HIО известны только в разбавленных водных растворах. Их растворы – слабые бромноватистая HBrO и иодноватистая HIO кис­лоты. Как и HClO, при нагревании и на свету разлагаются:

HЭO = НЭ + ½О2

Производные брома (I) и иода (I) – сильные окислители.

Соединения брома (III) и иода (III). Степень окисления +3 брома и иода проявляется в тригалогенидах (BrF3, IF3, ICl3) и соответствующих им анионах. Сильные окислители. Гидролиз соединений сопровождается диспропорционированием:

3BF3 + 6HOH = 2HBrO3 + HBr + 9HF

Соединения брома (V) и иода (V). Бром и иод проявляют степень окисления +5 в следующих соединениях: BrF5, BrO2F, IF5, IO2F, I2O5 и отвечающих им анионах. Проявляют кислотные свойства. Более или менее энергично взаимодействуют с водой, образуя кислоты:

I2O5 + НОН = 2HIO3

BrF5 + 3НОН = HBrO3 + 5HF

При взаимодействии с оснóвными соединениями они образуют соли:

6КОН + IF5 = К[IO3] + 5КF + 3Н2О

Производные ЭО3 называются броматами и иодатами. Анионы ЭО3 весьма устойчивы и поэтому их производные обычно образуются в водных растворах при действии на соединения брома, иода и астата сильных окислителей:

Br2 + 5Cl2+ 6Н2О = 2НBrO3 + 10НCl

Водные растворы НBrO3бромноватая и НIO3йодно­ватая кислоты. В ряду НСlO3–НBrO3–НIO3 кислотные свойства ослабевают, но повышается устойчивость.

При сильном нагревании броматы и иодаты разлагаются, выделяя кислород:

2НBrO3 = 2НBr + 3O2↑; 2НIO3 = 2НI + 3O2

Соединения брома (VII) и иода (VII). В высшей степени окисления для иода и брома известны BrF7, IF7, IO3F, а также анионы BrO4 и IO65–.

Водные растворы гексаоксоиодата (VII) водорода H5IO6 и тетраоксобромата (VII) водорода НBrO4 йодная и бромная кислота (последнее соединение существует только в водном растворе).

Подгруппа марганца (марганец, технеций, рений)

Для марганца характерны степени окисления +2, +4, +7 и существуют производные, отвечающие степеням окисления 0, +3, +5 и +6. Для рения наиболее устойчивы производные в высшей степени окисления +7. Для технеция типичными являются степени окисления +4, +6 и +7.

Марганец относится к числу наиболее распространенных элементов. Основным природным минералом марганца является пиролюзит MnО2nН2О; часто марганец встречается совместно с железом в оксидных, карбонатных и сульфидных рудах. Рений самостоятельные минералы образует редко и содержится в качестве примеси в молибденовых, вольфрамовых и платиновых рудах. Незначительные количества технеция встречаются в урановых рудах.

Простые вещества. Mn (марганец) – серебристо-белый или светло-серый металл, более твердый и хрупкий по сравнению с железом. В виде порошка пирофорен. В холодной воде пассивируется. Реагирует с водяным паром, кислотами, галогенами, кислородом, серой. Поглощает водород, но не реагирует с ним.

Tc (технеций) – серебристо-белый с серым оттенком, тугоплавкий, высококипящий металл. Радиоактивен. Химическая активность значительно ниже, чем у марганца. Не реагирует с водой, хлороводородной кислотой, щелочами, пероксидом водорода. Реагирует с азотной кислотой, «царской водкой», кислородом, галогенами.

Re (рений) – светло-серый, весьма твердый, тяжелый, тугоплавкий, высококипящий металл. Устойчив на воздухе. Не реагирует с водой, гидратом аммиака, водородом, иодом, азотом, углеродом, хлороводородной и фтороводородной кислотами. Реагирует с концентрированными кислотами-окислителями и пероксидом водорода, галогенами, серой.

Получение и применение. Основную массу металлического марганца получают путем методом алюмино- и силикотермии:

MnО2 + Si = Mn + SiО2

3Mn3О4 + 8Al = 9Mn + 4Al2O3

Рений обычно выделяют нагреванием NH4ReO4, KReО4 в токе водоро­да:

2NH4ReО4 + 4Н2 = 2Re + N2 + 8Н2О

Источником для получения технеция являются отходы атомной промышленности (продукты деления урана).

Около 90% марганца при­меняется в металлургии для легирования сталей (придает сплавам железа коррозионную стойкость, вязкость и твердость). Рений в основном используется в электротехнической промышленности и как катализатор.

Из соединений элементов подгруппы марганца наибольшее приме­нение имеет MnO2 для получения всех производных марганца, а также в качестве катализатора, окислителя, деполяризатора в гальванических элементах, в том числе батарей карманных фонариков и т. д. Оксоманганат (VII) калия KMnO4 используется в медицине. Ряд соединений используют в качестве микроудобрений. Соединения рения, как и сам металл, при­меняют в качестве катализаторов.

Соединения марганца (0), технеция (0), рения (0). Для марганца и его аналогов известны карбонилы состава Э2(СО)10. Диамагнетизм карбонилов подтверждает образование связи Э–Э по обменному механизму и возникновение биядерного кластера типа (CO)5–Mn–Mn–(CO)5. Карбонилы металлов способны к реакциям замещения и окисления – восстановления.

Соединения марганца (II). По химическим свойствам бинарные соединения Mn(II) слабо амфотерны (преобладают признаки оснóвных соединений).

MnО + 2HCl(разб.) = MnCl2 + H2O

Большинство солей Mn (II) хорошо растворимы в воде; малорастворимы MnS, Mn(ОН)2, MnСО3 и Mn3(РО4)2.

Придействии окислителей производные Mn (II) проявляют восстановительные свойства. Так, в щелочной среде Mn(ОН)2 легко окисля­ется даже молекулярным кислородом воздуха. Поэтому Mn(ОН)2, получаемый по обменной реакции, быстро темнеет с образо­ванием MnО2∙Н2О.

Сильные окислители, такие как PbO2 (в кислой среде), переводят соединения Mn (II) в оксоманганаты (VII):

2MnSО4 + 5PbO2 + 6HNО3 = 2НMnО4 + 3Pb(NО3)2 + 2PbSО4 + 2Н2О

Соединения Тс (II) и Re (II) не характерны.

Соединения марганца (IV). Устойчивые бинарные соединения марганца (IV) – диоксид MnО2, тетрафторид MnF4 и относительно устойчивые производные гексагалогеноманганаты (IV)-комплексов типа MnF62– и MnС162–.

MnО2 – наиболее устойчивое соединение марганца, при обычных условиях не растворяется в воде и без нагревания устойчив к дейст­вию большинства кислот. По химической природе амфотерен. При нагревании с кислотами MnО2 проявляет окислительные свойства:

MnО2 + 4HCl = MnС12 + С12↑ + 2Н2O

2MnО2 + 2H2SO4(конц., кип.) = 2MnSO4 + О2↑ + 2H2O

Соединения марганца (VI), технеция (VI), рения (VI). Соединения, в которых степень окисления марганца и его аналогов +6, немногочисленны. Из них более устойчивы соединения рения и технеция, для которых известны фториды и хлориды, ряд оксогалогенидов и оксиды.

Степень окисления +6 марганца несколько стабилизируется в манганат-ионе MnО42–. Производные MnО42–, ТсО42,- и ReO42 в водных растворах существуют лишь при большом избытке щелочи.

Гидролиз галогенидов и оксогалогенидов Тс (VI) и Re (VI) сопровождается диспропорционированием с образованием НЭО4, ЭО2 и HHal.

3TcF6 + 10H2O = TcO2 + 2HTcO4 + 18HF

Соединения Mn (VII), Тс (VII), Re (VII).Для Mn (VII) известны лишь оксид Mn2О7 и оксофторид MnО3F, а для Re (VII) получены соединения ReF7, Re2О7, что объясняется повышением устойчивости соединений. Это типичные кислот­ные соединения, они взаимодействуют с водой с образованием кислот:

Э2О7 + Н2О = 2НЭО4

Mn2О7 – неустойчивая маслянистая жидкость, получаемая действием концентрированной серной кислоты на оксоманганаты (VII):

2КMnО4 + H2SO4(конц.) = Mn2О7 + K2SO4 + H2O

2Mn2О7 = 4MnО2 + 3О2

Тетраоксоманганат (VII) водорода НMnО4 неустойчив. В водных растворах является сильной кислотой, называемой марганцевой. В ряду HMnО4–HTcО4–HReО4 сила кислот несколько уменьшается. Большинство производных MnО4, ТсО4 и ReO4 (перманганаты, пертехнаты и перренаты) хорошо растворимо в воде.

Соединения марганца (VII) – сильные окислители. Тетраоксоманганаты (VII) или перманганаты в качестве сильных окислителей широко используют­ся в лабораторной практике. В зависимости от среды возможны следующие направления вос­становления иона MnО4:

Кислая среда: MnО4 + 8Н+ + 5ē = Mn2+ + 4H2O

Нейтральная и щелочная среда: MnО4 + 2Н2O + 3ē = MnО2 + 4OН

Сильнощелочная среда: MnО4 + ē = MnО42–

При нагревании оксоманганаты (VII) распадаются:

2КMnO4 = К2MnO4 + MnO2 + O2

 

VIIIА-группа (благородные газы): гелий Не 1s2, неон Ne 2s22p6, аргон Ar 3s23p6 и элементы подгруппы криптона – криптон Kr 4s24p6, ксенон Хе 5s25p6, радон Rn 6s26p6. Их атомы имеют завершенную конфигурацию внешнего электрон­ного слоя, характеризуются наименьшими значениями атомных радиусов и наивысшими потенциалами ионизации. Неметаллы. В природе встречаются только в свободном состоянии. При обычных условиях все элементы VIIIА-группы представляют собой моноатомные газы, которые лишь при значительном охлаждении могут быть переведены в жидкое или твердое состояние.

VIIIВ-группа включает 9 элементов: подгруппа железа – железо Fe 3d64s2, рутений Ru 4d75s1, осмий Os 5d66s2; подгруппа кобальта – кобальт Co 3d74s2, родий Rh 4d85s1, иридий Ir 5d76s2; подгруппа никеля – никель Ni 3d84s2, палладий Pd 4d105s0, платина Pt 5d96s1. По мере заполнения d-орбиталей вторым электроном усили­вается сходство соседних элементов по периоду. Так, Ni прояв­ляет большое сходство как с Со и Fe, так и с Сu. Кроме того, вследст­вие лантаноидного сжатия особая близость свойств наблюдается у диад Ru–Os, Rh–Ir и Pd–Pt. Поэтому эти элементы 5-го и 6-го периодов часто объединяют в семейство так называемых платиновых метал­лов, а Fe, Со и Ni объединяют в семейство железа.

 

Не (гелий) – бесцветный, трудносжимаемый газ. Наиболее распространенный после водорода элемент кос­моса, он состоит из изотопа 4Не с примесью 3Не. Накапливание ядер 4Не во Вселенной обусловлено термо­ядерной реакцией, служащей источником солнечной и звездной энер­гии:

41Н = 4Не + 2β+ + 2ν

На Земле гелий накапливается за счет α-распада радиоактив­ных элементов, содержится растворенным в минералах, в самородных металлах. Содержание Не в воздухе 5∙10–4% (об.).

В промышленности гелий в основном выделяют из природных газов методом фракционной дистилляции при глубоком охлаждении. Газообразный гелий применяется для создания инертной атмосфе­ры при сварке металлов, при консервации пищевых продуктов и др.

По сравнению с другими благородными газами обладает наиболь­шей энергией ионизации атома. Особая устойчивость элект­ронной структуры атома отличает гелий от всех остальных химических элементов периодической системы.

Плохо растворяется в воде, лучше – в бензоле, этаноле, толуоле. Обладает сильной способностью проникать через стекло и металлическую фольгу. Не реагирует со всеми веществами (простыми и сложными), не образует (в отличие от других благородных газов) клатратов с водой и органическими растворителями. Но при сильном возбуждении атомов гелий может образовывать неустойчивые молекулярные ионы Не2+, захватывающие недостающий электрон и распадающиеся на два нейтральных атома. Возможно также образование ионизированных молекул НеН+.

 

 

Ne (неон) – бесцветный, трудносжимаемый газ. Содержание Ne в воздухе 0,0015% (об.). В природе представлен двумя стабильными изотопами 21Ne и 23Ne.

Получают фракционной дистилляцией жидкого воздуха при глубоком охлаждении. Применяется в электровакуумной технике для наполнения стабилизаторов напряжения, фотоэлементов и других приборов. Раз­личные типы неоновых ламп с характерным красным свечением используют в светотехнике и т. п.

Неон обладает очень высоким ионизационным потен­циалом, и поэтому не образует соединений валентного типа. При сильном возбуждении атомов образует моле­кулярные ионы типа Ne2+. Практически не растворяется в воде, плохо растворяется в этаноле. Образует клатрат 8Nе∙46Н2О. Не реагирует со всеми другими веществами.

 

 

Ar (аргон) – бесцветный газ. Самый распространенный в природе элемент VIIIА-группы, содержание в воздухе 0,932% (об.). В природе преобладает наиболее тяжелый изотоп 40Ar (с примесями 36Ar, 38Ar). Образуется при захвате электрона ядром нуклида 40К в литосфере Земли.

Получают фракционной дистилляцией жидкого воздуха при глубоком охлаждении. Применяют для создания инертной атмосферы (аргоно-дуговая сварка алюминиевых и алюмо-магниевых сплавов), в ядерной энергетике (ионизационные счетчики). Различные типы аргоновых ламп с характерным синим свечением используют в светотехнике.

Вследствие высокой энергии ионизации (и большой устойчивости электронной структуры атома) не образует соединения валентного типа. Плохо растворяется в воде, лучше – в органических растворителях. Образует молекулярные соединения включения – клатрат 8Ar∙46Н2О и сольваты Ar∙4C6Н5ОН, Ar∙2L (L = HCl, HBr, H2S, CO2, SO2). Не реагирует со всеми другими веществами (простыми и сложными).

 

Подгруппа криптона(криптон, ксенон, радон)

 

Элементы подгруппы криптона характеризуются меньшей энергией ионизации атомов, чем типические элементы VIIIА-группы, поэтому они образуют соединения обычного типа. Так, ксенон проявляет степени окисления +2, +4, +6 и +8 (по характеру соединений напоминает иод).

В ряду Не–Ne–Ar–Kr–Хе–Rn увеличивается поляризуемость молекул, усиливается растворимость в воде и других растворителях, возрастает склонность к адсорбции и устойчивость соединений включения.

Kr (криптон) – бесцветный газ. Содержание в воздухе 1,1∙10–4% (об.). Очень плохо растворяется в воде, этаноле. Образует клатрат 8Кr∙46Н2О и сольват 2Кr∙12C6Н5ОН. Не реагирует с кислотами и щелочами. Реагирует с атомным фтором (образуется KrF2) и образует неустойчивые KrF4, KrO3∙Н2О и BaKrO4.

Хе (ксенон) – бесцветный газ. Содержание в воздухе 8∙10–6% (об.). Плохо растворяется в воде, лучше – в органических растворителях. Образует сольват 4Хе∙3C6Н5ОН. Не реагирует с кислотами и щелочами. Реакционная способность выше, чем у криптона, реагирует с сильными окислителями.

Rn (радон) – бесцветный газ, радиоактивен. Плохо растворяется в воде, хорошо – в органических растворителях. Образует клатрат 8Rn∙46Н2О. Реакционная способность выше, чем у ксенона. Химические свойства изучены мало из-за высокой радиоактивности. Окисляется при действии окислителей; реагирует со фтором (продукт – твердая смесь фторидов RnFn), жидкими BrF3 и BrF5 (предполагаемый продукт – RnF2), твердым (O2)[SbF6] при 25°С (продукт – RnF[SbF6]).

Криптон и ксенон получают фракционной дистилляцией жидкого воздуха при глубоком охлаждении. Радон образуется в природе при радиоактивном распаде нуклидов 232Th, 235U, 238U, 218At, 226Ra.

Криптон применяется в электровакуумной технике, смеси его с ксеноном используются в качестве наполнителей различного рода осветительных ламп и трубок. Радиоактивный радон находит примене­ние в медицине (например, «радоновые ванны»).

Соединения ксенона. Все многообразие соединений ксенона (и ряда других благородных газов) получают, исходя из фторидов – реакционноспособные вещества, функционирующие главным образом в роли энергичных окислителей.

Фториды получают прямым синтезом:

Хе(г) + F2(г) = XeF2(к)

Хе(г) + 2F2(г) = XeF4(к)

Хе(г) + 3F2(г) = XeF6(к)

Кроме того, фториды ксенона склонны к диспропорционированию и окислительно-восстановительному гидролизу:

2ХеF2 = Хе + XeF4

3XeF4 = Хе + 2XeF6

6XeF4 + 12Н2О = 2ХеО3 + 4Хе + 3О2 + 24HF

XeF6 + Н2О = XeОF4 + НF

XeОF4 + 2Н2О = ХеО3 + 4НF

Оксид ХеО3 обладает кислотными свойствами (чрезвычайно взрывчатое соединение), со щелочами образует оксоксенаты (VI):

ХеО3 + NaOH = Na2XeO4 + H2O

При диспропорционировании соединений ксенона (VI) или при их окислении энергичными окислителями получают производные – перксенаты или оксоксенаты (VIII):

4XeF6 + 18Ba(OH)2 = 3Ba2XeO6 + Xe + 12BaF2 + 18H2O

ХеО3 + 4NaOH + O3 = Na4XeO6 + О2 + 2H2O

При взаимодействии перксенатов с безводной серной кислотой получается ХеО4, медленно отщепляющий кислород уже при обычных условиях.

Ва2ХеО6 + 2H24 = 2BaSО4 + ХеО4 + 2Н2О

Фториды ксенона склонны к реакциям присоединения, образуя комплексные соединения:

XeF2 + SbF5 = [XeF][SbF6]

XeF6 + 2CsF = Cs2[XeF8]

 

Подгруппа железа(железо, рутений, осмий)

 

Для железа наиболее характерны степени окисления +2 и +3, известны также производные железа, в которых его степень окисления равна –2, 0, +4, +6 и +8. Наиболее устойчивы соединения Ru (IV) и Os (VIII).

Железо по распространенности в природе находится на четвертом месте после кислорода, кремния и алюминия. Основными формами рудоносных минералов железа являются оксидные и сульфидные соединения: магнетит Fe3O4, гематит Fe2O3, лимонит Fe2O3nH2O), пирротин FeS, пирит FeS2. Изредка встречается самородное железо космического (метеорного) или земного происхождения. Железо содержится в природных водах и гемоглобине. Рутений и осмий сопутствуют платине и палладию в полиметалли­ческих рудах, а также встречаются в виде самородных сплавов с ири­дием и платиной.

Простые вещества. Fe (железо) – серебристо-белый, мягкий, ковкий металл. При различных температурах существует в трех полиморфных модификациях (α, γ, δ). Медленно окисляется во влажном воздухе (процесс ржавления). Не реагирует с гидратом аммиака; пассивируется в концентрированных серной и азотной кислоте, разбавленных щелочах. Реагирует с разбавленными кислотами, концентрированными щелочами, неметаллами, монооксидом углерода. Вытесняет благородные металлы из их солей в растворе.

Ru (рутений) – белый с серым оттенком металл, очень твердый, хрупкий, тугоплавкий. Благородный металл; не реагирует с водой, разбавленными кислотами, щелочами, гидратом аммиака, «царской водкой». Простых катионов не образует. Реагирует с концентрированными кислотами (в присутствии кислорода), сильными окислителями (при спекании), кислородом, галогенами, серой. Поглощает значительное количество Н2.