Синтез глицеролфосфата и жирных кислот.

Модульная единица 9. Обмен липидов.

Цели и задачи изучения модульной единицы.Изучить биохимические механизмы синтеза и превращений основных групп липидов. Научить студентов использовать знания по обмену липидов для прогнозирования биохимических процессов в растениях при обосновании технологий выращивания сельскохозяйственных культур и оценке качества растительной продукции.

 

Главными запасными формами липидов растений являются жиры, которые интенсивно синтезируются в хлоропластах, семенах и плодах. Особенно много накапливается жиров в семенах масличных растений. Изучение биохимических процессов в созревающих семенах масличных растений показало, что увеличение в них содержания жиров сопровождается понижением концентрации сахаров. При введении в созревающие семена сахаров, меченных радиоактивным изотопом углерода 14С, радиоактивная метка довольно быстро обнаруживалась в составе ацилглицеринов жира. Это послужило доказательством, что синтез жира осуществляется из углеводов. В дальнейшем было выяснено, что непосредственными предшественниками в синтезе ацилглециринов жира являются активированные формы жирных кислот и фосфорилированный глицерин, которые образуются из продуктов углеводного обмена.

Синтез глицеролфосфата. Исходными веществами для синтеза глицеролфосфата служат продукты фотосинтеза и дыхания 3-фосфоглице-риновый альдегид и фосфодиоксиацетон. Они образуются в цикле Кальвина при фотосинтезе, на стадии гликолиза при дыхании, а также в реакциях пентозофосфатного цикла. Непосредственно глицеролфосфат синтезируется в результате восстановления фосфодиоксиацетона ферментом глицерол-3-фосфатдегидрогеназой:

 
 
Н / С=О СН2ОН СН2ОН | | | СНОН D С=О + НАД×Н +Н+ ¾® СНОН + НАД+ | | | СН2О(Р) СН2О(Р) СН2О(Р) 3-фосфогли- фосфодиокси- цериновый ацетон глицерол-3-фосфат альдегид

 


Синтезированный из углеводных продуктов глицерол-3-фосфат затем используется для синтеза ацилглицеринов жира, фосфолипидов и гликолипидов.

Синтез жирных кислот

В опытах по изучению синтеза жирных кислот в созревающих семенах масличных растений выяснено, что наиболее легко они образуются из производных уксусной кислоты. На этой основе было сформулировано предположение, что жирные кислоты синтезируются в результате реакций конденсации двууглеродных органических соединений. В дальнейшем с использованием меченных 14С биохимических предшественников было показано, что основным органическим соединением, непосредственно участвующем в синтезе жирных кислот, является ацетилкофермент А, который образуется как продукт дыхательных реакций или реакций распада липидов и аминокислот.

На первом этапе происходит активирование ацетилкофермента А путем превращения его в малонилкофермент А. Эту реакцию катализирует фермент ацетил-КоА-карбоксилаза (6.4.1.2), содержащий в активном центре группировку биотина. В состав фермента также входят катионы Mn2+. Карбоксилирование ацетил-КоА сопряжено с гидролизом АТФ:

(1)

СН3–С~S–КоА+СО22О+АТФ ¾®НООС–СН2–С~S–КоА+АДФ + Н3РО₄

|| ||

О О

ацетил-КоА малонил-КоА

 

В дальнейшем процесс синтеза жирной кислоты осуществляется с участием мультиферментного комплекса, называемого синтетазой жирных кислот. Ферментный комплекс растворён в жидкой фазе цитозоля и в его центральной части находятся молекулы специфического белка, способного присоединять и переносить ацильные остатки в ходе синтеза жирной кислоты. Этот белок получил название ацилпереносящего белка (АПБ). К одному из сериновых остатков ацилпереносящего белка через остаток фосфорной кислоты присоединена группировка витамина пантотеновой кислоты, с которой связан остаток тиоэтаноламина. В связи с тем, что остаток тиоэтаноламина содержит активную тиоловую группу, ацилпереносящий белок сокращённо обозначают HS-АПБ. С помощью АПБ поддерживается рост цепи синтезируемой жирной кислоты и её переход от одного фермента к другому в пределах мультиферментного комплекса. Строение ацилпереносящего белка можно представить в виде следующей схемы:

Н Н НО СН3 ОН

| | | | |

НS–СН2–СН2–N–С–СН2–СН2–N–С–С–С–СН2–О–Р–О–Ser–АПБ

|| || | | ||

О О Н СН3 О

тиоэтаноламин пантотеновая кислота

 

Под действием фермента АПБ-ацетилтрансферазы (2.3.1.38) остаток уксусной кислоты от ацетил-КоА переносится на АПБ:

(2)

СН–С~S–КоА + НS–АПБ ¾® СН3–С~S–АПБ + НS–КоА

|| ||

О О

ацетил-КоА ацетил-АПБ

 

С участием другого фермента АПБ-малонилтрансферазы (2.3.1.39) на АПБ также переносится остаток малоновой кислоты от малонил-КоА:

(3)

НООС–СН2–С~S–КоА + НS–АПБ ¾® НООС–СН2–С~S–АПБ + НS–КоА

|| ||

О О

малонил-КоА малонил-АПБ

 

В следующей реакции, происходящей в мультиферментном комплексе синтезы жирных кислот, под действием фермента 3-оксоацил-АПБ-синтазы (3.3.1.41) происходит образование из двууглеродного и трёхуглеродного радикалов ацетил-АПБ и малонил-АПБ четырёхуглеродного фрагмента, соединённого с АПБ. При этом в ходе реакции молекула малонил-КоА декарбоксилируется и в качестве продукта данного превращения выделяется та же молекула СО2, которая вошла в состав малонил-КоА в результате карбоксилирования ацетил-КоА: (4)

СН₃–С~S–АПБ + НООС–СН2–С~S–АПБ ® СН3–С–СН2–С~S–АПБ + СО2 + НS-АПБ

|| || || ||

О О О О

ацетил-АПБ малонил-АПБ ацетоацетил-АПБ

 

Таким образом, карбоксилирование ацетил-КоА можно рассматривать как реакцию активирования ацетильного радикала для переноса на соответствующий акцептор, котор

ый представляет собой ацильный радикал, соединённый с АПБ в ферментном комплексе синтетазы жирных кислот.

Образовавшееся 3-оксоацилпроизводное далее подвергается восстановлению под действием фермента 3-оксоацил-АПБ-редуктазы (1.1.1.100), который использует в качестве донора электронов и протонов восстановленные динуклеотиды НАДФ×Н. В результате восстановительной реакции синтезируется 3-оксипроизводное:

(5)

СН3–С–СН2–С~S–АПБ + НАДФ×Н+Н+®СН3–СН–СН2–С~S–АПБ+НАДФ+

|| || | ||

О О ОН О

ацетоацетил-АПБ 3-оксибутирил-АПБ

 

Как мы уже знаем, источниками образования восстановленных динуклеотидов НАДФ×Н служат фотосинтетическое фосфорилироввание или реакции пентозофосфатного цикла.

В следующей реакции от 3-оксибутирил-АПБ отщепляется молекула воды с образованием a,b-ненасыщенного производного кротонил-АПБ. Данное превращение катализирует фермент кротонил-АПБ-гидратаза (4.2.1.58):

(6)

СН3–СН–СН2–С~S–АПБ ® СН3–СН=СН–С~S–АПБ + Н2О

| || ||

ОН О О

3-оксибутирил-АПБ кротонил-АПБ

 

Ненасыщенное производное восстанавливается ферментом еноил-АПБ-редуктазой (1.3.1.10), который использует в качестве донора электронов и протонов восстановленные динуклеотиды НАДФ×Н:

(7)

СН3–СН=СН–С~S–АПБ+НАДФ×Н+Н+®СН3–СН2–СН2–С~S–АПБ+НАДФ+

|| ||

О О

кротонил-АПБ бутирил-АПБ

 

На следующем этапе синтеза жирной кислоты бутирил-АПБ становится акцептором ацетильного радикала, переносимого от малонил-АПБ, в результате осуществляется уже синтез шестиуглеродного 3-оксоацил-АПБ. Затем происходят реакции 5-7, в ходе которых синтезируется восстановленное шестиуглеродное производное гексаноил-АПБ. Затем оно также становится акцептором ацетильного радикала, переносимого от малонил-АПБ, снова повторяются реакции 5-7, дающие уже восьмиуглеродное восстановленное производное, связанное с АПБ. По аналогичной схеме указанные реакции повторяются до тех пор, пока не синтезируется полностью углеводородная цепь жирной кислоты, которая далее вследствие ослабления связи с АПБ переносится на кофермент А:

R–С~S–АПБ + НS–КоА ® R–С~S–КоА + НS–АПБ

|| ||

О О

ацил-АПБ ацил-КоА

 

Длина синтезированной углеводородной цепи жирной кислоты определяется природой ферментного комплекса синтетазы жирных кислот, а в свою очередь природа ферментного комплекса зависит от генотипа организма. Как мы видим, в указанных выше реакциях синтез жирной кислоты происходит в результате переноса на восстановленный акцептор двууглеродного фрагмента от малонил-АПБ, имеющего трёхуглеродный радикал. При этом каждый такой перенос сопровождается выделением СО2. Вначале акцептором двууглеродного фрагмента служит ацетил-АПБ, затем бутирил-АПБ, гексаноил-АПБ и т.д. В общем виде ход удлинения углеродной цепи жирной кислоты в процессе её синтеза можно показать в виде следующей схемы:

С2 + С3 ¾® С4 + С1

С4 + С3 ¾® С6 + С1

С6 + С3 ¾® С8 + С1 и т. д.

 

Согласно такой схеме синтеза в образующихся жирных кислотах всегда содержится чётное число углеродных атомов.

Учитывая, что исходным веществом для синтеза жирных кислот является ацетил-КоА и на отдельных этапах синтеза используются молекулы АТФ (при образовании малонил-КоА), восстановленных динуклеотидов НАДФ×Н и воды, можно записать суммарное уравнение синтеза насыщенной жирной кислоты на примере пальмитиновой кислоты:

8СН3–С~S–КоА + 7АТФ + 14НАДФ×Н + 14Н+ + Н2О ¾®

||

О

→ СН3(СН₂СН₂)7СООН + 8НS–КоА + 7АДФ + 7Н3РО4 + 14НАДФ+

 

В ходе синтеза молекулы пальмитиновой кислоты семь раз осуществляется перенос на акцептор двууглеродного фрагмента от малонил-АПБ, при образовании каждой молекулы которого происходит гидролиз АТФ. При этом на каждом этапе процесса удлинения углеводородной цепи жирной кислоты дважды повторяются реакции восстановления с участием восстановленных динуклеотидов НАДФ×Н.

У растений, животных и бактерий преобладают жирные кислоты с чётным числом углеродных атомов. Однако, в клетках некоторых бактерий в значительном количестве синтезируются жирные кислоты с нечётным числом углеродных атомов. Это обусловлено тем, что в клетках бактерий наряду с ацетилкоферментом А важным ключевым метаболитом является пропионилкофермент А, который вместо ацетил-КоА может связываться с ацилпереносящим белком и вступать во взаимодействие с малонил-АПБ, образуя пятиуглеродное 3-оксопроизводное:

СН3–СН2–С~S–АПБ+НООС–СН2–С~S–АПБ®СН3–СН2–С–СН2–С~S–АПБ+НS–АПБ

|| || ↓ || ||

О О СО₂ О О

пропионил-АПБ малонил-АПБ 3-оксопентаноил-АПБ

 

Затем пятиуглеродное 3-оксопроизводное восстанавливается, проходя такие же стадии превращений, которые представлены в реакциях 5-6 синтеза жирных кислот с участием ферментного комплекса синтетазы жирных кислот. Восстановленный пятиуглеродный фрагмент далее становится акцептором нового двууглеродного фрагмента от малонил-АПБ, после чего снова проходят восстановительные реакции, приводящие к синтезу семиуглеродного восстановленного фрагмента, который снова становится акцептором следующего двууглеродного фрагмента и т.д. Из представленного механизма синтеза видно, что на конечном этапе образуется восстановленная углеводородная цепь жирной кислоты с нечётным числом углеродных атомов. Синтез жирной кислоты с нечётным числом углеродных атомов можно представить в виде следующей схемы:

С3 + С3 ® С5 + С1

С5 + С3 ® С7 + С1

С7 + С3 ® С9 + С1 и т.д.

В составе некоторых разновидностей липидов бактерий, птиц и растений найдены жирные кислоты, имеющие боковые ответвления в их углеродной цепи. Как установлено, такие жирные кислоты могут синтезироваться с участием в качестве акцептора двууглеродных фрагментов разветвлённых ацильных производных, образующихся при распаде аминокислот с разветвлённой углеродной цепью – валина, лейцина, изолейцина:

О О О

// // //

СН3–СН–С~S–КоА СН3–СН–СН2–С~S–КоА СН3–СН2–СН–С~S–КоА

| | |

СН3 СН3 СН3

производное валина производное лейцина производное изолейцина

 

Универсальным донором разветвлённых ацильных радикалов при синтезе жирных кислот является пропионилкофермент А, который, под-вергаясь карбоксилированию, превращается в метилмалонилкофермент А:

 

 

СН3

|

СН3–СН2–С~S–КоА+СО22О+АТФ®НООС–СН–С~S–КоА+АДФ+Н3РО4

|| ||

О О

пропионил-КоА метилмалонил-КоА

 

Затем ацильный радикал метилмалонил-КоА переносится на ацилпереносящий белок ферментного комплекса синтетазы жирных кислот и участвует далее в синтезе жирных кислот в качестве донора разветвлённого ацильного радикала:

 

СН3 СН3

| |

СН3–СН2–С~S–АПБ+НООС–СН–С~S–АПБ ® СН3–СН2–С–СН–С~S–АПБ+НS–АПБ

|| || ↓ || ||

О О СО2 О О

пропионил-АПБ разветвлённое 3-оксопроизводное

 

После восстановления разветвлённого оксопроизводного образуется восстановленный ацильный радикал, имеющий боковое метильное ответвление у второго углеродного атома. Он далее служит акцептором следующего двууглеродного фрагмента с боковым метильным радикалом, донором которого служит метилмалонил-АПБ. Таким образом, с участием метилмалонильного радикала после каждого акта удлинения ацильного радикала углеродная цепь синтезируемой жирной кислоты удлиняется на два углеродных атома, а у каждого чётного углеродного атома имеется боковой метильный радикал.

Если к исходному акцептору с радикалом R происходит последовательное присоединение четырёх двууглеродных фрагментов с боковым метильным радикалом и на каждом этапе их присоединения осуществляется восстановление полученных 3-оксопроизводных, строение синтезированной жирной кислоты можно записать в виде следующей формулы:

О

8 7 6 5 4 3 2 1//

R–СН–СН2–СН–СН2–СН–СН2–СН–С~S–АПБ

| | | |

СН3 СН3 СН3 СН3

 

В составе растительных жиров и липидов клеточных мембран преобладают ненасыщенные жирные кислоты. Они синтезируются из насыщенных кислот путём их дегидрогенизации в аэробных условиях, то есть с участием кислорода. В анаэробных условиях происходит синтез насыщенных кислот. Кроме кислорода, важнейшими соединениями, необходимыми для синтеза ненасыщенных жирных кислот, являются восстановленные динуклеотиды НАДФ×Н. На свету в образовании ненасыщенных кислот участвует ферредоксин.

Процесс дегидрогенизации насыщенных жирных кислот катализиру-ют ферменты оксигеназы, которые также называют десатуразами. Различают два вида десатураз I и II. Десатуразы первого типа имеются в клетках растений, животных, грибов, простейших организмов. Они локализованы в цитозоле и способны инициировать образование олеиновой кислоты из стеариновой, образующей соединение с коферментом А – стеароил-КоА:

О О

// //

СН3(СН2)16С~S–КоА+НАДФ×Н+Н+2®СН3(СН2)7СН=СН(СН2)7С~S–КоА+НАДФ+

Стеароил-КоА 2Н₂О олеоил-КоА

 

Синтез полиненасыщенных жирных кислот в клетках растений осуществляют десатуразы II, локализованные в эндоплазматическом ретикулуме, так как они образуются с участием полирибосом, связанных с мембранами эндоплазматического ретикулума. В клетках человека и животных превращения олеоил-КоА в линолеоил-КоА не происходит, поэтому полиненасыщенные жирные кислоты (линолевая, липоленовая) для этих организмов являются незаменимыми компонентами пищи.

Линолевая кислота, имеющая две двойные связи, образуется в результате дегидрогенизации олеоил-КоА по такому же механизму, как и синтез олеоил-КоА из стеароил-КоА. Далее по указанному механизму происходит дегидрогенизация линолеоил-КоА с образованием линоленоил-КоА. У животных в клетках печени в результате дегидрогенизации линолеоил-КоА синтезируется производное арахидоновой кислоты–арахидоноил-КоА.

В связи с тем, что для синтеза ненасыщенных жирных кислот необходимы кислород и восстановленные динуклеотиды НАДФ×Н, при их недостатке образование данных кислот ослабляется. Так, например, происходит в условиях повышенных температур, когда снижается растворимость СО2 в жидкой физиологической среде. При избыточном азотном питании увеличивается доля восстановленных динуклеотидов НАДФ×Н, затрачиваемых на восстановление нитритов и синтез аминокислот, и меньше участвует в дегидрогенизации насыщенных жирных кислот, вследствие чего синтез ненасыщенных жирных кислот уменьшается.