Оксокислоты
Гидрокси- и аминокислоты.
Гидроксикислоты содержат в молекуле одновременно гидроксильную и карбоксильную группы, аминокислоты — карбоксильную и аминогруппу.
В зависимости от расположения гидрокси- или аминогруппы по отношению к карбоксилу различают a-, b-, g- и т. д. гидроксикислоты или аминокислоты.
a-Гидрокси и а-аминокислоты. При нагревании эти соединения претерпевают межмолекулярную дегидратацию с образованием шестичленных кислород- и азотсодержащих гетероциклов — лактидов и дикетопиперазинов соответственно.
a-Гидроксикислоты способны разлагаться при нагревании в присутствии минеральных кислот с образованием карбонильных соединений и муравьиной кислоты.
Гликолевая кислота НОСН2СООН — простейший представитель гидроксикислот. Встречается во многих растениях, например свекле и винограде.
Молочная кислота СН3СН(ОН)СООН — одна из важнейших гидроксикислот. Широко распространена в природе как продукт молочнокислого брожения лактозы, содержащейся в молоке, и других углеводов, входящих в состав овощей и плодов. Кислое молоко, кефир, кислая капуста, моченые яблоки и т. д. содержат в значительном количестве молочную кислоту, образующуюся в результате жизнедеятельности молочнокислых бактерий. Соли называют лактаты.
Молочная кислота содержит асимметрический атом углерода, поэтому может существовать в виде двух энантиомерных форм. В организме L-(+)-молочная кислота, называемая также мясомолочной кислотой, является одним из продуктов превращения глюкозы (гликолиза). Она накапливается в мышцах при интенсивной работе, вследствие чего в них возникает характерная боль. Причина накопления молочной кислоты – недостаток кислорода, что вызывает восстановление пировиноградной кислоты в молочную с участием кофермента НАДН.
Оксокислоты — соединения, содержащие одновременно карбоксильную и альдегидную (или кетонную) группы. В соответствии с этим различают альдегидокислоты и кетокислоты.
Простейшей альдегидокислотой является глиоксиловая кислота НООС—СНО.
Она содержится в недозрелых фруктах, но по мере созревания ее количество уменьшается. Глиоксиловая кислота обычно существует в виде гидрата НООС—СН(ОН)2. Электроноакцепторная карбоксильная группа в глиоксиловой кислоте, подобно трихлорметильной группе хлораля, создает значительный дефицит электронной плотности и соседнем атоме углерода, в результате чего две гидроксильные группы при нем удерживаются достаточно прочно. Важную роль в биохимических процессах играют следующие кетонокислоты.
Пировиноградная, щавелевоуксусная и a-оксоглутаровая кислоты участвуют в цикле трикарбоновых кислот. Ацетоуксусная кислота относится к b-кетонокислотам. При переаминировании a-кетонокислоты образуют соответствующие a-аминокислоты.
Пировиноградная кислота СН3С(О)СООН (т. пл. 14 °С, т. кип. 165 °С) — одно из центральных соединений в цикле трикарбоновых кислот. Она является также одним из промежуточных продуктов при молочнокислом и спиртовом брожении углеводов. Может быть получена при взаимодействии ацетилхлорида с цианидом калия с последующим гидролизом образующегося кетононитрила или путем окисления молочной кислоты.
Своим названием пировиноградная кислота обязана тому, что впервые была выделена при пиролизе виноградной кислоты. Ее соли называют пируватами. Пировиноградная кислота легко декарбоксилируется при нагревании с разбавленной и декарбонилируется — с концентрированной серной кислотой. При окислении пировиноградная кислота превращается в уксусную кислоту и оксид углерода (IV).
Декарбоксилирование пировиноградной кислоты in vivo протекает в присутствии фермента декарбоксилазы и соответствующего кофермента. Получающийся при этом ацетальдегид, не теряя связи с коферментом («активный ацетальдегид»), может присоединяться к a- кетонокислотам, образуя a-ацето-a-гидроксикислоты. Пировиноградная кислота сильнее уксусной и способна к енолизации. Важное её производное – фосфоенолпировиноградная кислота (фосфат енольной формы пировиноградной кислоты). В организме анион этой кислоты – фосфоенолпируват – образуется в процессе гликолиза и служит предшественником пирувата.
Ацетоуксусная кислота СН3С(О)СН2СООН — пример b-кетонокислоты. В свободном состоянии представляет сиропообразную жидкость, уже при комнатной температуре медленно выделяющую диоксид углерода. Получающийся при этом ацетон образуется первоначально в енольной форме. Подобное декарбоксилирование – общее свойство b-кетонокислот.
Ацетоуксусная кислота образуется in vivo в процессе метаболизма высших жирных кислот и как продукт окисления b-гидроксимасляной кислоты наряду с продуктами ее превращений накапливается в организме у больных сахарным диабетом (так называемые «ацетоновые» или «кетоновые» тела).
Большое теоретическое значение в связи с вопросами таутомерии и двойственной реакционной способности имеет этиловый эфир ацетоуксусной кислоты СН3С(О)СН2СООС2Н5, так называемый ацетоуксусный эфир.
Ацетоуксусный эфир — бесцветная жидкость (т. кип. 181 °С) с приятным фруктовым запахом. Впервые синтезирован более 100 лет назад, его строение долгое время было предметом острых дискуссий. Основная трудность заключалась в том, что в результате его химических превращений получались два ряда производных – ацетоуксусной и b- гидроксикротоновой кислот, т.е. ацетоуксусный эфир оказался веществом, проявляющим двойственную реакционную способность.
В соответствии со строением ацетоуксусного эфира (вещества, имеющего кетонную группу) протекают реакции присоединения циановодородной кислоты и восстановления. Однако под действием натрия, гидроксида натрия или при ацилировании в определенных условиях образуются производные b-гидроксикротоновой кислоты, т. е. соединения с енольной группой. Исследования показали, что ацетоуксусный эфир представляет смесь двух изомеров – кетона (95 %) и енола (5 %), находящихся в таутомерном равновесии. Это еще один пример кето-енольной таутомерии.
При действии на ацетоуксусный эфир какого-либо реагента в реакцию вступает один из таутомеров. Поскольку второй таутомер за счет равновесия восполняет убыль реагирующего таутомера, то таутомерная смесь реагирует в данном направлении
Скорость установления таутомерного равновесия может быть оценена на основании изучения взаимодействия ацетоуксусного эфира с бромом в присутствии хлорида железа(III). Ацетоуксусный эфир как енол образует с хлоридом железа характерное фиолетовое окрашивание. Если к этому окрашенному раствору прибавлять по каплям бром то енольный таутомер, присоединяя бром по двойной связи, переходит в бромпроизводное и окраска исчезает. Однако чернз некоторое время окраска вновь появляется, так как нарушенное равновесие восстанавливается и кетонный мономер частично переходит в енольную форму. Опыт можно вторить несколько раз, пока все взятое количество ацетоуксусного эфира не прореагирует с бромом.
Ацетоуксусный эфир широко применяется в органическом синтезе как исходное вещество для получения кетонов, карбоновых кислот, гетерофункциональных соединений, в том числе производных гетероциклов, представляющих интерес в качестве лекарственных средств.