Реакции нуклеофильного замещения с участием sр2-гибридизованного атома углерода.

ТЕМА 7. Нуклеофильные реакции в ряду карбонильных соединений

Механизм реакций этого типа рассмотрим на примере взаимодействия карбоновых кислот со спиртами (реакция этерификации). В карбоксильной группе кислоты реализуется р,p- сопряжение, поскольку пара электронов атома кислорода гидроксильной группы ОН вступает в сопряжение с двойной углерод-кислородной связью (p-связью):

Такое сопряжение является причиной, с одной стороны, повышенной кислотности карбоксильных соединений, а с другой уменьшения частичного положительного заряда (d+) на атом углерода карбоксильной группы (sр2-гибридизованном атоме) что значительно затрудняет непосредственную атаку нуклеофила.

С целью увеличения заряда на атоме углерода используют дополнительное протонирование — кислотный катализ (стадия I):

 

 

       
 
   
 

 


На стадии II происходит атака нуклеофила (молекулы спирта R'OH), протонирование гидроксильной группы с образованием хорошо уходящей группы Н2О, на стадии III — ее отщепление и на стадии IV — регенерация протона — возврат катализатора с образованием конечного продукта — сложного эфира.

Реакции нуклеофильного присоединения. Наиболее характерны реакции нуклеофильного присоединения (AN) для оксосоединений — альдегидов и кетонов. Механизм этих реакций имеет общие черты, это двухстадийный ионный процесс. Первая стадия (лими­тирующая) представляет собой обратимую атаку нуклеофилом (Nu) с образованием так называемого тетраэдрического интермедиата. Вторая стадия — быстрая атака электрофилом:

На реакционную способность оксосоединения оказывает вли­яние природа групп R и R'. Так, введение электронодонорных заместителей снижает реакционную способность, а электроноакцепторных — усиливает. Поэтому альдегиды более активны в ре­акциях AN, чем кетоны. Кроме того, реакционная способность за­висит от природы нуклеофила. Например, тиолы RSH, являясь более сильными нуклеофилами, чем спирты ROH, вступают в реакцию AN как с альдегидами, так и с кетонами, образуя устойчи­вые к гидролизу тиоацетали, тогда как ацетали — продукты присо­единения спиртов к альдегидам — к гидролизу не устойчивы

 
 

 


Обратите внимание, что последние стадии процесса представляют собой атаку нуклеофила (молекулы спирта R'OH) на электрофильный реакционный центр (карбкатион) и идут по механизму нуклеофильного замещения SN. Образующиеся промежуточные соединения — полуацетали — являются неустойчивыми. Стабилизация их возможна только в циклической форме при образовании циклических полуацеталей, например 5-гидроксипентаналя:

 
 


Другой пример биологически важной реакции этого типа - присоединение аминов и некоторых других азотсодержащих соединений к карбонильным соединениям – альдегидам и кетонам. Реакция идет по механизму нуклеофильного присоединения – эли минирования (AN—E):

 

Другие азотсодержащие соединения, выступающие в этих реакциях в роли нуклеофила: гидразин NH2–NH2, фенилгидразин, С6Н5–NH–NH2,гидроксиламин NH2–ОН.

Продуктами реакций AN—E этих случаях являются соединения, называемые гидразонами, фенил-гидразонами, оксимами.

Реакции конденсации. Протекают в присутствии катализаторов, чаще щелочной природы. Приводят к усложнению углеродного скелета. Характерным примером являются альдольная и кротоновая конденсации: