Химические свойства моносахаридов

Аминосахара

Изомеризация , эпимеризация

Н- С-ОН d Н- С-ОН d Н- С-ОН d Н- С-ОН d

Н-С-ОН d Н-С-ОН d Н-С-ОН d Н-С-ОН d Н-С-ОН d

| | | | |

5 СН2 ОН СН2 ОН СН2 ОН СН2 ОН СН2 ОН

D-рибулоза(d d)

D - рибоза ( d d d) D- ксилоза ( d l d ) D- арабиноза(d d l ) D - 2- дезоксирибоза

Две пентозы D- Рибоза ( d d d ) и D-арабиноза(d d l ) в растворе взаимно превращаются друг в друга. Промежуточным соединением является D-рибулоза. (d d). В точности также в процессе изомеризации D- рибулоза может превращаться в оба углевода- D-рибозу и D-арабинозу.

Два природных углевода, которые имеют общую кетозу, являются эпимерами, в слабо щелочном растворе превращаются друг в друга; процесс превращения называется - эпимеризацией ( в терминах стереоизомерии- эпимеры- диастереомеры)

D- Рибоза ( d d d ) <——> D-рибулоза(d d) <——> D-арабиноза(d d l )

В более широком понимании- эпимеры- диастереомеры, отличающиеся конфигурацией только одного хирального центра.

 

 

Гексозы

Состав гексозы С6(Н 2О)6 или С6 Н12 О6 .

Различают два вида гексоз : альдозы и кетозы

Альдозы содержат четыре хиральных атома , и образуют 16 стереоизомеров.( восемь принадлежат D- ряду, восемь L – ряду )

В биологическом отношении наиболее важное значение для организма человека имеют три альдозы D- стереоряда: D- глюкоза ( d d l d ), D- манноза ( d d l l ),

D – галактоза. ( d l l d ) и кетоза D – фруктоза (d d l ).

1СНО СНО СНО СН2 ОН

| | | |

Н –С-ОН d НО –С-Н l Н –С-ОН l С=О

| | | |

НО-С-Н l НО-С-Н l Н-С-ОН d НО- С- Н l

| | | |

Н-С-ОН d Н-С-ОН d НО-С- Н l Н-С-ОН d

| | | |

| | | |

6СН2 ОН СН2 ОН СН2 ОН СН2 ОН

 

D- глюкоза( d d l d) D- манноза ( d d l l ) D– галактоза( d l l d) D– фруктоза (d d l ).

Все перечисленные три альдогексозы- диастереомеры ( эпимеры) .

 

Две альдогексозы связаны взаимными неферментативными превращениями в растворе ( способствует слабощелочная среда ) : эпимеры глюкоза и манноза отличаются конфигурацией у второго атома углерода и превращаются друг в друга и в общую кетозу - фруктозу.

D- глюкоза ( d d l d ) <——> D – фруктоза (d d l ) <——> D- манноза ( d d l l)

В организме эти превращения катализируются ферментами.

Превращение двух других эпимеров : глюкозы и галактозы, которые отличаются конфигурацией третьего атома углерода, спонтанно невозможно.

 

галактоза ( d l l d) <—Х—> глюкоза ( d d l d)

Это сложный ферментативный процесс и в растворе углеводов in vitro не происходит.

Наибольшее значение имеют D- 2- глюкозамин и D- 2- галактозамин , которые встречаются в природе в виде аминопроизводных или N- ацильных производных и находятся в составе гетерополисахаридов. В биохимических реакциях образуются из моносахаридов с участием амида глутаминовой кислоты( глутамина)

 


 


СНО

|

H –C- NН2 d

|

НО-С-Н l

|

Н-С-ОН d

|

Н-С-ОН d

| D- 2- глюкозамин

СН2 ОН

Знание химических свойств моносахаридов необходимо для понимания путей превращения этих важнейших биоактивных соединений в организме и участия их в метаболических процессах.

1. цикло-оксотаутомерия( кольчато-цепная таутомерия) и мутаротация

2. изомеризация , эпимеризация

3. образование аминогруппы у атома С 2.

4. образование гликозидов

5. образование сложных эфиров

6. реакции окисления

7. реакции восстановления

 

 

9.4.1. Цикло-оксотаутомерия

Моносахариды существуют в форме альдегидов( кетонов) и циклических внутренних

Полуацеталей( полукеталей).

Присутствие двух групп - карбонильной и гидроксильной - в молекуле моносахарида делает возможным протекание внутримолекулярной реакции нуклеофильного присоединения А N, которая сопровождается образованием циклического полуацеталя

( полукеталя).

полуацетальный ( гликозидный)

H Н гидроксил

| |

——С= О ——— *С — ОН атом углерода хиральный

<———> возникают 2 зеркальных

А N изомера

————— О — Н ——— О

циклическая форма ( полуацеталь )

Два процесса приводят к образованию циклического соединения:

А) нуклеофильная атака кислорода по атому углерода карбонильной группы

Б) атом водорода присоединяется к кислороду карбонильной группы

Появляется спиртовая группа вместо карбонильной.

Возникают два зеркальных изомера, т.к. возникает новый хиральный центр. Такие зеркальные циклические изомеры называются аномерами.

Гидроксильная полуацетальная группа в аномерном центре углевода в циклической форме называется гликозидной, аномерной.

 


аномерные гидроксигруппы( выделены жирным шрифтом)

 

Н ОН НО Н

\ / \ / .

С С

/ \ / \

цикл цикл

Зеркальная изомерия циклической формы моносахарида

Устойчивыми являются пятичленные и шестичленные циклические формы.

Пятичленные формы носят название фуранозы( фуранозные циклы) ( по аналогии с пятичленным циклическим соединением фураном)

Шестичленные циклы носят название пиранозы ( пиранозные циклы )

Все альдопентозы : рибоза , дезоксирибоза и др. и кетогексоза фруктоза in vivo

присутствуют в форме фуранозы( in vitro возможно образование и пиранового цикла). Фуранозный цикл плоский.

Альдогексозы глюкоза , галактоза, манноза образуют in vivo шестичленные пирановые циклы (in vitro возможно также образование фуранового цикла )

Пиранозный цикл может быть, как и циклогексан , в двух пространственных формах : кресло и ванна. В природных соединениях пиранозные циклы имеют конформацию кресло.

Пиранозные циклы более устойчивы к размыканию по сравнению с фуранозными.

В циклической и нециклической форме число гидроксильных групп одинаковое, но в циклической форме исчезает карбонильная группа. Вместо нее образуется гидроксильная группа, которую называют полуацетальной ( гликозидный гидроксил). Два зеркальных циклических изомера по атому углерода С1 обозначают двумя символами- а- и β .

Два циклических изомера моносахарида, отличающихся только пространственным расположением полуацетального гидроксила, носят название аномеров : а-аномер и

Β- аномер.

Циклические формы моносахаридов записывают , используя два различных вида структурных формул: Колли- Толленса и Хеуорса.

Формулы Колли- Толленса образуются из проекций Фишера, в настоящее время они применяются крайне редко, но зато поясняют, как происходит циклизация. От формулы Колли-Толленса зная особые правила, легко перейти к формуле Хеуорса.

 

Цикло –оксотаутомерия гексоз.

Глюкоза

| |

Н О-1С-Н Н - С = О Н - 1С -ОН

| | |

Н -2C- ОН Н -C- ОН Н -C- ОН

| | |

НО-3С-Н О НО-С-Н НО-С-Н О

| | |

Н -4C- ОН Н -C- ОН Н -C- ОН

| | |

Н -5C Н-С-ОН Н-С | | | |

СН2 ОН СН2 ОН СН2 ОН

А Б

β- аномер схема а-аномер

β – D- глюкопираноза циклизации а- D -глюкопираноза

Атом кислорода гидроксильной группы у С5 нуклеофильно атакует атом углерода карбонильной группы, атом водорода этой гидроксильной группы переходит к атому кислорода карбонильной группы – замыкается цикл( атом кислорода атома С5 рисуют в середине цикла)

У атома С1 возникает гидроксильная группа- полуацетальный, гликозидный гидроксил. ( на схеме формулы А и Б, гидроксильная группа выделена жирным шрифтом)

В циклических формах атом С1 тетраэдрический, связан с четырьмя разными группировками , возникает новый хиральный центр , который обусловливает существование двух изомеров- а- и β-аномеров. Атом С1 принято называть «аномерным»

Аномер, в котором полуацетальный гидроксил расположен также, как гидроксильная группа, определяющая стереоряд ( справа от оси молекулы), является а-аномером ; если полуацетальный гидроксил расположен по другую сторону ( слева) - β-аномер.

Для построения формул Хеуорса следует нарисовать шестичленный цикл, поставить циклический атом кислорода в определенном месте(правый верхний угол, это положение не нумеруется), нарисовать вертикальные связи у каждого атома углерода и те группы, которые в формуле Колли-Толленса были справа( d- конфигурация) написать под плоскостью цикла, а те , что были слева ( l- конфигурация) написать над плоскостью цикла.

Упрощенное правило: что справа -то внизу, что слева – то вверху ( удобно запомнить, в каждой паре двух слов одна буква «р» ).

На рисунке изображена а –D - глюкопираноза ( формула Хеуорса )

d полуацетальный

l d гидроксил в а-форме направлен «вниз»

 

На следующем рисунке представлены оксоформа D-галактозы и циклоформа : а –D

глюкопираноза.( внимательно рассмотрите и сравните расположение всех гидроксигрупп в обеих формулах и гликозидного гидроксила )

 

d полуацетальный

D – галактоза (d l l d) l d гидроксил

а- D- галактопираноза

 


Цикло –оксотаутомерия пентоз и кетогексоз

Альдопентозы и кетогексозы в биологических соединениях образуют фуранозные пятичленные циклы. Все ранее отмеченные особенности и правила записи формулы Хеурса сохраняются.

 

β - полуацетальный

D- фруктоза ( d d l) d l гидроксил

β - D- фруктофураноза

 

В растворе рибоза существует в четырех формах: - пиранозных и фуранозных. Доля менее устойчивых фуранозных форм ниже 25%, но во всех природных соединениях: нуклеотидах, нуклеиновых кислотах, АТФ, рибоза и дезоксирибоза находятся только в β - аномерной фуранозной форме, что увеличивает внутренний запас энергии соединения и его реакционную способность.

 

Мутаротация ( изменение вращения)

В растворах устанавливается равновесие между всеми возможными формами: оксо и циклическими ( а и β ).

Кристаллическая глюкоза а-D- глюкопираноза имеет коэффициент удельного вращения

[ а ] =1120 , а у кристаллической β- D- глюкопиранозы [ а ] =190. В растворе каждый из аномеров превращается в другой и устанавливается равновесная смесь обоих аномеров

[ а ] = 530 До наступления равновесия значение [ а ] изменяется, это явление получило название мутаротации

а-аномер <—> оксоформа <—> β-аномер

около 36 % 0,02% около 64%

β-Аномерная форма более устойчива, т.к. гликозидный гидроксил может образовать водородную связь с атомом кислорода в пиранозном цикле.

 

Н – О β-аномерная форма

———О

 

 

Н

Альдозы в циклической форме сохраняют свойства карбонильных соединений, в том числе качественные реакции, позволяющие обнаружить присутствие альдегидной группы.

 

 


9.4. 3. Фосфорные эфиры

Все моносахариды в клетке существуют в виде фосфорных эфиров, которые образуются в ферментативных реакциях с участием АТФ

 

Рибоза + АТФ ———> рибозо -5- фосфат

Глюкоза + АТФ ———> глюкозо -6- фосфат

Галактоза + АТФ ———> галактозо -6- фосфат

Возможен перенос фосфатной группы из одного положения в другое в обратимой реакции изомеризации

Глюкозо-6-ф <———> Глюкозо-1-ф ( аномеры а и β )

 

Фосфорные эфиры гидролизуются in vitro и in vivo

Глюкозо-6-фосфат + Н2О ———> глюкоза + Н3 РО4