Физико-химические свойства белков

Классификация. Биологические и химические свойства белков

Понятие о нативном белке

При определенных значениях рН и температуры ППЦ обладает, как правило, только одной конформацией, которая называется нативной и при которой белок в организме выполняет свою специфическую функцию. Почти всегда эта единственная конформация в энергетическом отношении преобладает над десятками и сотнями вариантов других конформаций.

Удовлетворительной классификации белков не существует, они условно классифицируются по пространственному строению, растворимости, биологическим функциям, физико - химическим свойствам и другим признакам.

1. по строению и форме молекул белки подразделяют на:

- глобулярные (сферические)

- фибриллярные(нитевидные)

2. по химическому составу делятся на:

- простые, которые состоят только из аминокислотных остатков

- сложные, имеют в составе молекулы соединения небелковой природы.
Классификация сложных белков основана на химической природе небелковых
компонентов.

Один из главных типов классификации:

З.по выполняемым биологическим функциям:

- ферментативный катализ. В биологических системах все химические реакции
катализируются специфическими белками-ферментами. Известно более 2000

ферментов. Ферменты - мощные биокатализаторы, которые ускоряют реакцию как минимум в 1 млн. раз.

- транспорт и накопление

Перенос многих молекул небольшого размера и различных ионов часто осуществляется специфическими белками, например гемоглобином, миоглобином, которые переносят кислород. Пример накопления: ферритин накапливается в печени.

координированное движение. Белки являются основным компонентом сократительных мышц ( актиновые и миозиновые волокна). Движение на микроскопическом уровне - это расхождение хромосом во время митоза, движение сперматозоидов за счёт жгутиков.

- механическая опора. Высокая упругость кожи и костей обусловлена наличием
фибриллярного белка - коллагена.

- иммунная защита. Антитела - это высокоспецифические белки, способные узнавать
и связывать вирусы, бактерии, клетки других организмов.

- генерирование и передача импульсов. Ответ нервных клеток на импульсы
опосредован рецепторными белками

регуляция роста и дифференцировки. Строгая регуляция последовательности экспрессии генетической информации необходима для роста дифференцировки клеток. В любой отрезок времени жизни организма экспрессируется только небольшая часть генома клетки. Например, под действием специфического белкового комплекса формируется сеть нейронов у высших организмов.

К другим функциям пептидов и белков относят гормональные. После того как человек научился осуществлять синтез гормональных пептидов, они стали иметь исключительно важное биомедицинское значение. Пептидами являются различные антибиотики, например, валиномицин, противоопухолевые препараты. Кроме того белки выполняют функции механической защиты (кератин волос или слизистые образования, выстилающие ЖКТ или полость рта).

Основное проявление существования любых живых организмов - это воспроизведение себе подобных. В конечном итоге, наследственная информация представляет собой кодирование последовательности аминокислот всех белков организма. На здоровье человека влияют белковые токсины.

Молекулярная масса белков измеряется в дальтонах (Да) — это единица массы, практически равная массе водорода (-1,000). Термин дальтон и молекулярная масса вводятся как взаимозаменяемые. Mr большинства белков находится в пределах от 10 до 100000.

В основе многообразия выполняемых белками функций лежит необычайная универсальность их физико-химических свойств. Растворы белков являются молекулярно-дисперсными, вследствие большого размера растворённых молекул такие растворы имеют физические свойства, характерные для коллоидных систем (буферные свойства, гидрофобность, онкотическое давление, седиментация, коагуляция, высаливание, диализ). Коллоидные растворы представляют собой растворы с размером частиц от 0,1 до 0,01 микрон. Наличие на поверхности белковых молекул ионизирующих групп (NH2-COOH ) определяет кислотно - основные характеристики растворов белков. Таких ионогенных групп может насчитываться до 15-20 на каждые 100 аминокислотных остатков. Т.о. белки - это полиэлектролиты, т.к. они могут содержать одновременно «+» и «-» заряженные группировки, белки являются амфолитами. Значение рН, при котором

белок находится в изоэлектрическом состоянии (т.е. когда заряд равен 0), называют изоэлектрической точкой. В кислой среде увеличение концентрации Н+ приводит к подавлению диссоциации СООН- группы и уменьшает «-» заряд белков.

В щелочной среде избыток ОН связывается с протонами Н+, образованными при

диссоциации:-NН3+ OH-*~NH2+ H2O , что уменьшает «+» заряд молекулы.

Т.о. суммарный заряд какого-либо белка зависит от рН раствора. Для многих ферментов

характерно то, что их нативная активность проявляется при значениях рН, близких к

ИЭТ, поэтому даже самые незначительные изменения рН крови, цитоплазмы, клеток и

т.д. приводят к очень серьезным последствиям и являются причиной целого ряда

заболеваний. Большинство белков имеет гидрофильную поверхность, однако некоторые

на поверхности содержат гидрофобные радикалы, как следствие этого плохо растворимы

или не растворимы в воде, но растворимы в липидах.

Процесс взаимодействия таких радикалов с липидами называется сольватация. Такие

белки характерны для мембран. Кроме значения рН растворимость белка зависит от его

химической природы и состава растворителя. Например, белки, не растворимые в воде,

растворяются в присутствии низких концентраций нейтральных солей.

Некоторые примеры растворимости белков: альбумины растворимы в воде и в солевых

растворах, глобулины слабо растворимы в воде, но хорошо в солевых растворах.

Кроме уровня организации молекулы, аминокислотного состава ППЦ на растворимость

белков существенное влияние оказывает рН.

В ИЭТ белки способны агрегироваться и выпадать в осадок. Осаждение белков может

быть вызвано и другими факторами, например, действие водоотнимающих средств,

таких как C2H5OH, CH3COH, CHOH. Растворимость белка снижается при денатурации.

Этот процесс связан с разрывом, нарушением слабых связей и взаимодействий, которые

поддерживают нативную структуру. Ковалентные связи при этом не изменяются.

Факторы денатурации:

1. температура

2. изменение нормального для белка значения рН

3. высокие концентрации солей, которые нарушают электростатические
взаимодействия и водородные связи

4. соли тяжёлых металлов, которые образуют с белками стойкие нерастворимые
комплексы

5. мочевина и гуанидин, который действует на гидрофобные взаимодействия и
водородные связи

6. сульфидные связи (13-меркаптоэтанол) или надмуравьиная кислота, которые
разрушают дисульфидные связи.

Денатурация может быть обратимой и необратимой. Находящиеся на поверхности аминокислотные остатки способны образовывать разнообразные связи с другими веществами, которые называют лигандами. Как правило, белковые молекулы имеют специфические центры связи, имеющие вид углубления. Существуют определённые принципы взаимодействия белков с лигандами:

1. соседние остатки ППЦ могут взаимодействовать таким образом, что доступ воды к другим участкам поверхности белка может быть ограничен, в этом случае удаётся достигнуть более прочных водородных связей и ионных взаимодействий между белком и лигандом,

2. образование комплекса из соседних полярных аминокислот изменяет реакционную
способность боковых группировок, что может привести к активированию обычно
неактивных функциональных группировок,

3. значительную роль во взаимодействиях белков с другими молекулами играют
гидрофобные остатки аминокислот.

Помимо активного центра у белков имеются определённые участки, которые способны регулировать активность связывания, взаимодействие белка с другими веществами — такие участки называются аллостерическими. Аллостерические центры характерны для многих ферментов и играют роль в их активности.