ОКИСЛИТЕЛЬНОЕ ДЕКАРБОКСИЛИРОВАНИЕ ПИРУВАТА

И a-КЕТОГЛУТАРОВОЙ КИСЛОТ В МИТОХОНДРИЯХ

ОКИСЛИТЕЛЬНОЕ ДЕКАРБОКСИЛИРОВАНИЕ ПИРОВИНОГРАДНОЙ

МАКСИМАЛЬНО СОКРАЩЕННАЯ (МАКСИМАЛЬНО УКОРОЧЕННАЯ) ДЫХАТЕЛЬНАЯ ЦЕПЬ.

Она представлена только цитохромной частью. Эксперименты показали, что здесь может быть окислен только один субстрат - аскорбиновая кислота, с участием фермента, восстановленные эквиваленты включаются в цепь на уровне цитохрома С цитохромоксидазы (цитохром аа3), но в реальных условиях такого окисления практически не происходит. Образуется вода и 1 молекула АТФ. Коэффициент Р/О=1.

Возможность такого окисления доказана в эксперименте in vitro. А в живой клетке аскорбиновая кислота обычно используется как донор водорода в системе окисления оксигеназного типа (реакции, катализируемые монооксигеназами: смотрите лекцию «Внемитохондриальное окисление»). Такие реакции с участием витамина «С» особенно важны для формирования белка коллагена, в котором за счет монооксигеназной реакции образуется гидроксипролин.

 

Этот вариант дыхательной цепи удлинен по сравнению с полной цепью за счет того, что первое звено катализируется не никотинамидным ферментом, а мультиферментным комплексом. Это единая надмолекулярная структура. В состав этого комплекса входят 3 фермента и 5 коферментов. Такой комплекс называется мультиферментным комплексом окислительного декарбоксилирования a-кетокислот,и он окисляетдва субстрата:

1. Пировиноградную кислоту (пируват, ПВК)

Окисляется с помощью ферментов пируватдегидрогеназного комплекса;

2. a-кетоглутаровую кислоту (a-КГ)

Окисляется с помощью ферментов a-кетоглутаратдегидрогеназного комплекса.

Оба комплекса ферментов работают одинаково. Они катализируют реакции окислительного декарбоксилирования соответствующей a-кетокислоты.

 

 

1-ю реакцию катализирует фермент ПИРУВАТДЕКАРБОКСИЛАЗА (Е1).

Простетической группой пируватдекарбоксилазы является тиаминдифосфат (ТПФ, тиаминпирофосфат, ТДФ) - это активная форма витамина В1. Активная часть ТПФ - тиазоловое кольцо и атом водорода в нем. Для краткости записывают: НС-ТПФ.

 

Пируватдекарбоксилаза отщепляет CO2, а оставшаяся оксиэтильная группа присоединяется к ТПФ.

 

 

 

2-ю и 3-ю реакцию процесса катализирует фермент АЦИЛТРАНСФЕРАЗА (Е2). Простетическая группа ацетилтрансферазы - амид липоевой кислоты. Катализирует перенос оксиэтильного остатка на свой собственный кофермент (строение ЛК знать описательно по учебнику). В ее составе есть дисульфидная связь.

 

 

 

На этом этапе уже произошло окисление оксиэтильного остатка до остатка уксусной кислоты, одновременно с этим началось восстановление липоевой кислоты.

3 этап - продолжает работать фермент ацилтрансфераза.

На этой стадии фермент переносит остаток уксусной кислоты на молекулу кофермента А (КоА). В КоА содержится остаток пантотеновой кислоты (витамин В3). Активной частью КоА является остаток тиоэтаноламина и его -SH группа.

Выяснено, что этот фермент переносит не только остатки уксусной кислоты, но и остатки других кислот (нециклических). Поэтому его еще называют коферментом ацилирования.

 

Второй фермент данного комплекса является не только ацетилтрансферазой, но и окислительным ферментом одновременно (дегидрогенизирующая ацетилтрансфераза).

Энергия этого окисления аккумулируется в виде макроэргической связи активной формы уксусной кислоты (ацетил-КоА).

 

4 этап катализируется ферментом ДИГИДРОЛИПОИЛДЕГИДРОГЕНАЗОЙ.

Кофермент этого этапа - особый ФАД с низким окислительно-восстановительным потенциалом (обозначается как ФАД'). Переносит протоны и электроны с дигидролипоата на НАД - последний кофермент в описанном комплексе.

 

 

В итоге можем записать суммарное уравнение:

 

Аналогично действует ферментный комплекс для окислительного декарбоксилирования a-кетоглутарата. Но названия двух из трех ферментов другие:

1-й фермент - декарбоксилаза a-кетоглутаровой кислоты

2-й фермент - сукцинилтрансфераза (переносит остаток янтарной кислоты)

 

Суммарное уравнение для этого комплекса:

 

В результате действия этих двух комплексов, каждый из двух приведенных субстратов (ПВК и a-КГ) - теряют СО2, два протона и два электрона, которые передаются на кислород с образованием Н2О и параллельно происходит фосфорилирование трех молекул АТФ. Сами субстраты превращаются в итоге в активную форму соответствующей кислоты.

Макроэргическая связь в молекулах этих активных форм может легко трансформироваться в макроэргическую связь молекулы АТФ. Например, для молекулы сукцинил-КоА:

 

Такой способ образования АТФ, когда нет сопряжения с процессами окисления, называется СУБСТРАТНЫМ ФОСФОРИЛИРОВАНИЕМ (при этом используется макроэргическая связь в молекуле какого-нибудь субстрата). В организмах высших животных и человека этот путь получения АТФ не является главным. Благодаря такому механизму окислительное декарбоксилирование a-кетокислот может считаться энергетически более выгодной, потому что образуется вещество с макроэргической связью - ацетил-КоА. Некоторые синтетазы используют макроэргические связи из Ацетил-КоА или Сукцинил-КоА для реакций биосинтеза.

Например, при синтезе гема гемоглобина используется часть молекул сукцинил-КоА:

 

Большая часть будет все же использоваться для синтеза ГТФ.

 

Другой продукт окислительного декарбоксилирования (Ацетил-КоА) может расходоваться в реакциях синтеза жирных кислот, холестерина, стероидов. А самая большая часть этого вещества используется при синтезе лимонной кислоты в реакциях Цикла Трикарбоновых Кислот.

 

ЭНЕРГЕТИЧЕСКИЙ ИТОГ УДЛИНЕННОЙ ЦЕПИ.

Образуются 3 молекулы АТФ путем окислительного фосфорилирования. Продукты окислительного декарбоксилирования (ацетил-КоА и сукцинил-КоА) содержат макроэргическую связь. Энергия макроэргической связи сукцинил-КоА используется двумя способами.

1) Субстратное фосфорилирование в ЦТК (так расходуется большая часть этого вещества).

2) Реакции синтеза гема (меньшая часть сукцинил-КоА).

Энергия макроэргической связи Ацетил-КоА используется только в реакциях синтеза:

а) Синтез лимонной кислоты (цитрата).

б) Синтез кетоновых тел

в) Синтез жирных кислот

г) Синтез холестерина

 

Среди субстратов МтО почти нет веществ, которые организм получает с пищей - только глутаминовая кислота.

Субстраты МтО - в основном органические кислоты, которые образуются в организме в процессе катаболизма. В процессе катаболизма из большого количества разнообразных пищевых веществ образуется всего 2 вида общих метаболитов: Ацетил-КоА и ПВК.