Пути использования цистеина

Взаимосвязь обмена серина, глицина, метионина и цистеина

Обмен некоторых аминокислот тесно связан

Пути использования серина и глицина

Реакция взаимопревращения глицина и серина

Серин и глицин превращаются друг в друга

Пути использования аспартата и глутамата

Реакции синтеза аммонийных солей

В организме аспартат и глутамат используются всеми клетками для синтеза пуриновых и пиримидиновых оснований. Амидные производные этих аминокислот являются транспортными формами аммиака из тканей в почки и печень. Кроме этого, глутаминовая кислота входит в состав глутатиона – вещества, выполняющего две различные функции – перенос аминокислот через мембрану и ключевое звено в антиоксидантной системе клетки. Также глутамат и его производное γ-аминомасляная кислота являются медиаторами в ЦНС.

  Пути использования глутамата   Пути использования аспартата

Роль реакции превращения серина в глицин состоит в образовании активной формы тетрагидрофолиевой кислоты – N5,N10-метилен-ТГФК.

 

Одновременно данная реакция является первой на пути катаболизма серина.

Несмотря на простоту строения, глицин и серин являются весьма востребованными аминокислотами в клетках. Благодаря взаимопревращению перечень возможных путей метаболизма этих аминокислот еще больше расширяется.

 

Образованный в реакции распада серина до глицина N5,N10-метилен-ТГФК при участии фермента метилен-ТГФК-редуктазы превращается в N5-метил-ТГФК. Ее метильный остаток участвует в метионин-синтазнойреакции реметилирования гомоцистеина в метионин. В печени, кроме метил-ТГФК, источником метильной группы может быть вещество бетаин (триметилглицин).

  Строение аденозилметионина

Метионин впоследствии присоединяет аденозильный остаток и превращается в активную форму метионина – S-аденозилметионин, участвующий во многих реакциях метилирования, в частности, при синтезекреатина, карнитина, фосфатидилхолина, адреналина. В результате перемещения метильной группы и отщепления аденозина остаетсягомоцистеин, имеющий два пути метаболизма:

Первый путь превращений гомоцистеина – реметилирование до метионина и вновь участие в реакциях метилирования и синтезе веществ.

Второй путь – взаимодействие с серином при участии цистатионин-синтазы, превращение в цистатионин с последующим распадом в цистеин и гомосерин.

 

Цистеин является чрезвычайно важной аминокислотой в связи с тем, что это единственный источник органической серы для клеток организма. В результате реакций метаболизма эта сера переходит в состав других серусодержащих веществ – фосфоаденозинфосфосерная кислота (ФАФС), коэнзим А, глутатион, сульфированные производные углеводов (хондроитинсульфат, кератансульфат, дерматансульфат) или выводится почками в виде сульфатов.