Оптимальная комбинация ресурсов
Возможность получить определенный выход продукта разными способами, или, иначе, взаимная за-мещаемость ресурсов, делает закономерным вопрос: какая комбинация ресурсов в наибольшей степени отвечает интересам предприятия?
Предприятие покупает ресурсы на рынках сырья, рабочей силы, энергии и т. д. Будем считать, что цена pi, по которой покупается i-тый ресурс, не зависит от объема покупки. Расходы фирмы на приобретение ресурсов в двумерном случае описываются выражением
C = p1x1 + p2x2. |
Множество комбинаций ресурсов, расходы на покупку которых одинаковы, графически изображается, прямой - аналогом бюджетной линии в теории потребления. В теории производства эта линия называется изокостой (от англ. cost - затраты). Ее наклон определяется соотношением цен p1/p2.
Постулат о рациональности поведения, лежащий в основе теоретической экономики, относится ко всем субъектам хозяйствования. Фирма, выступая на рынках ресурсов как рациональный потребитель и несущая затраты С, заинтересована в приобретении наиболее полезной комбинации ресурсов, т. е. комбинации ресурсов, дающей наибольший выход продукта. Задача определения наилучшей в этом смысле комбинации ресурсов полностью аналогична задаче нахождения потребительского оптимума. А в точке оптимума, как мы знаем, бюджетная линия касается кривой безразличия; соответственно и в точке, изображающей оптимальную комбинацию ресурсов, изокоста должна касаться изокванты (рис. 9,а). В этой точке MRTS (наклон изокванты) и отношение цен р1/р2 (наклон изокосты) совпадают. Итак, для оптимальной комбинации ресурсов выполняется равенство
MRTS = p1/p2. |
или, если принять во внимание равенство (5) для предельной нормы технической замены,
MP1/MP2.= p1/p2. | (7) |
Значения предельных продуктов каждого из ресурсов при оптимальной их комбинации должны быть пропорциональны их ценам.
Рис. 9. Оптимальная комбинация ресурсов
Допустим, что при сложившихся объемах потребления ресурсов MP1 =0.1, MP2=0.2, а цены p1=100, p2=300. При этом MP1/MP2 = 1/2, p1/p2 = l/3, так что данная комбинация не оптимальна. Увеличивая потребление первого ресурса (при этом MP1 снизится) и уменьшая потребление второго (МР2 увеличится), можно прийти к выполнению условия (7). Значит, потребление первого ресурса было недостаточным, второго - избыточным.