Производственная функция Кобба-Дугласа и ее свойства
Функция Кобба-Дугласа получена в результате математического преобразования простейшей производственной функции У= F(L, К) в такую модель, которая показывает, какой долей совокупного продукта вознаграждается участвующий в его создании фактор производства. Она имеет следующий вид:
Функция Кобба-Дугласа - модель с двумя переменными факторами производства. Параметр А - коэффициент, отражающий уровень технологической производительности и в краткосрочном периоде он не изменяется. Показатели а и j3- коэффициенты эластичности объема выпуска (К) по фактору производства, т. е. по капиталу К и труду L соответственно. При этом, если каждый из факторов оплачивается в соответствии со своим предельным продуктом, то а и /3 показывают доли капитала и труда в совокупном доходе. Иными словами, если цена капитала равна предельному продукту капитала, а цена труда равна предельному продукту труда, то параметры а и /3 определяют пропорцию, в которой труд и капитал получают свое вознаграждение за созданный продукт, т. е. долю капитала в доходе aY и долю труда в доходе /3Y. Так как /3= 1 - α, то а + /3= 1, из чего следует, что мы имеем дело с постоянной отдачей от масштаба. Интересно рассмотреть эмпирические значения параметров функции Кобба-Дугласа: А = 1,1; а = 1/4; /J = 3/4.Следовательно, доля капитала в национальном доходе составляет 25%, а доля труда - 75%.
В поисках путей наибольшей эффективности производства нас всегда должна интересовать предельная производительность участвующих в нем факторов', с помощью которой определяется оптимальный объем используемых ресурсов. Предельный продукт капитала МРК пропорционален отношению доли капитала в доходе к объему использованного капитала: МРк = аУ/ К. Аналогично определяется и предельная производительность труда: MPL =/3Y/L.
Рассмотрим свойства производственной функции Кобба-Дугласа.
Первое свойство - постоянство отдачи от масштаба- описывается формулой F(nK,nL) = п А К°ЬВ и означает, что если увеличить использование капитала и труда в n раз, то объем совокупного выпуска, или объем дохода, возрастет в такое же число раз.
Второе важное свойство функции Кобба-Дугласа связано с изменением предельной производительности факторов.Например, если привлечь в производство дополнительное количество капитала К, а труд L использовать в прежнем объеме, то, при прочих равных условиях, предельная производительность труда MPL увеличится, а предельная производительность возросшего объема капитала МРк снизится. Если же увеличить количество труда, при прочих равных условиях, то его предельная производительность снизится, а предельная производительность капитала возрастет. Вывод: нарушение пропорции между трудом и капиталом при заданной технологии приводит к отклонению от оптимального объема производства, т. е. к неэффективности производства.
Однако, если мы увеличим параметр Л, например, внедрив более производительную технологию, то получим одновременное повышение МРк и MPV что является условием интенсивного экономического роста.
Третье свойство производственной функции Кобба-Дугласа ~ постоянство отношения дохода от труда к доходу от капитала(Р/а), т. е. постоянство соотношения долей капитала и труда в национальном продукте.
Исследования американского сенатора и экономиста Пола Дугласа показали, что в Соединенных Штатах за сорок лет (с 1948 по 1989 гг.) соотношение р/аколебалось в пределах между 2 и З2, в результате чего оплата труда в 2-3 раза превышала вознаграждение капитала.1 Можно предположить, что постоянные рамки колебания соотношения |3/азаданы технологически. Колебания /5/авнутри этих рамок могут быть объяснены отклонением в соотношении / и S, так как вряд ли заработная плата, шкала налогообложения и нормы амортизации почти ежегодно могли претерпевать значительные изменения.
Макроэкономическое равенство /= 5лежит в основе механизма экономического роста еще одной неоклассической модели, которая также базируется на производственной функции. Она называется моделью роста Со-лоу, по имени американского экономиста, лауреата Нобелевской премии Роберта Солоу.