Модель экономического роста Р. Солоу
В модели Солоу центральное место отводится технологическому прогрессу, который обеспечивает непрерывный экономический рост. К другим моделям данного направления относится однофакторная модель Домара-Харрода. В этой модели рост продукта связывается с нормой эффективностью накопления. Центральное уравнение этой модели имеет следующий вид: у=ав, где (1)
У – темп прироста продукта, а – норма накопления, в – эффективность накопления (коэффициент капиталоотдачи).
При вычислении нормы накопления (а) следует учесть, что, во-первых часть накопления осуществляется за счет амортизационного фонда и используется для возмещения выбытия основного капитала, во-вторых, из фонда накопления обеспечивается вложение не только в основной, но и в оборотный капитал, включая резервы.
Неоклассическая модель в условиях равновесия между спросом и предложением учитывает изменчивость коэффициента капиталоотдачи. Соотношение "капитал – производство" становится гибким вследствие того, что неоклассические модели учитывают не один, а два производственных фактора и допускают их взаимозаменяемость. Допуская различные комбинации производственных факторов, можно добиться роста объемов производства даже при той же технике. Среди аналитических инструментов неоклассических моделей главное место занимает производственная функция: У=f(K,L), где У- продукт, а К и L – затраты на капитал и труд. Объем и динамика продукта связывается с объемом и динамикой совокупных затрат и их эффективностью: или Y = abk+где d – коэффициент, отражающий соотношение величин факторов К и L к величине продукта У;
b и - параметры функции, характеризующие эластичность объемов и динамики продукта от затрат факторов производства, т.е. параметры, показывающие насколько увеличится объем производства, если любой производственный фактор увеличится на 1%;
Ки П- темпы роста соответственно капитала и труда.
Модель Солоу имеет возможность описать эти изменения в динамике, т.е. делает его более похожим на фильм, чем фотографию. Модель роста Солоу показывает, как сбережения, рост населения и технологический прогресс воздействуют на рост объема производства во времени.
Модель дает основу, с помощью которой можно проанализировать один из наиболее важных вопросов экономики: какая часть производственного продукта должна потребляться сегодня, и какая часть его должна сберегаться для использования в будущем. Поскольку сбережения равны инвестициям, сбережения определяют объем капитала, которым экономика будет располагать в будущем.
Предложение товаров в модели Солоу описывается с помощью известной производственной функции: Y=F (K,L), где К – капитал, L-труд.
Т.е. объем производства зависит от запасов капитала и используемого труда. Модель Солоу предполагает, что производственная функция обладает свойством постоянной отдачи от масштаба.
Производственная функция с постоянной отдачей от масштаба удобна для этой цели, потому что объем производства на одного рабочего зависит тогда от количества капитала, приходящегося на одного работника.
Производственную функцию можно записать так у=f(k), где f(k)=F (k,1). На рис. Изображена эта производственная функция
У f(k) Закон убывающей эффективности
Выпуск (аналогия).
на одного
работника МРК
капитал на одного работника К
Тангенс угла наклона данной производственной функции показывает, сколько дополнительного продукта на одного работника можно получить, если увеличить капиталовооруженность на одну единицу. Эта величина является предельным продуктом капитала МКР. Это можно записать так:
МКР = f(k + 1) - f(k). Заметим, что по мере роста капиталовооруженности график производственной функции становится более пологим, т.е. угол наклона уменьшается. Такая производственная функция характеризуется понижающейся предельной производительностью капитала: каждая дополнительная единица капитала производит меньше продукта, чем предыдущая. Когда запас капитала на одного работника невелик, каждая дополнительная единица капитала дает большую отдачу. Если же капиталовооруженность труда высокая, то дополнительная единица капитала менее эффективна и дает меньше дополнительной продукции.
В модели Солоу спрос предъявляется со стороны потребителей и инвесторов. Иными словами, продукция произведенная каждым рабочим, делится между потреблением, приходящимся на одного рабочего, и инвестициями в расчете на одного рабочего: У=с+I, где с – потребление, I – инвестиции.
Модель Солоу предполагает, что функция потребления принимает простую форму C = (1 – S)·у, где норма сбережения S принимает значения от 0 до 1. Эта функция означает, что потребление пропорционально доходу. Каждый год часть (1 – S) дохода потребляется и часть S сберегается.
Роль такой трактовки потребления выяснится, если мы заменим величину C величиной (1 – S)·у в тождестве национальных счетов: у =(1 – S)·у + I. После преобразования получим: I = S·у. Это уравнение показывает, что инвестиции (как и потребление) пропорциональны доходу. Если инвестиции равны сбережениям, норма сбережений S показывает, какая часть произведений продукции направляется на капитальные вложения.
Представив две главных составляющих модели Солоу – производственную функциюифункцию потребления, можно проанализировать, как накопление капитала обеспечивает экономический рост. Запасы капитала могут изменяться по двум причинам: 1. Инвестиции приводят к росту запасов капитала. 2. Часть капитала изнашивается, то есть амортизируется, что приводит к уменьшению запасов капитала. Для того, чтобы понять, как изменяются запасы капитала, необходимо найти факторы, определяющие величину инвестиций и амортизации. Инвестиции в расчете на одного работника являются частью продукта, приходящегося на одного работника (S·y). Заменив y выражением производственной функции, мы представим инвестиции на одного работника как функцию от капиталовооруженности: I = S·f(k).
Чем выше уровень капиталовооруженности k, тем выше объем производства f(k) и больше инвестиции I. Это уравнение, которое включает в себя производственную функцию и функцию потребления, связывает существующие запасы капитала k с накоплением нового капитала i. На графике показано, как норма сбережений определяет разделение продукта на потребление и инвестиции для каждого из значений k.
У Производительность f(k)
С Sf(k)
у
i
капиталовооруженность k
Норма сбережений S определяет деление производственного продукта на потребление и инвестиции. Для любого уровня капиталовооруженности k объем производства есть f(k), инвестиции равны S·f(k), а потребление составляет f(k) – S·f (k).
Предположим, что ежегодно выбывает определенная доля капиталаσ. Назовем σ нормой выбытия. Например, если капитал эксплуатируется в среднем 25 лет, то норма выбытия равна 4% в год (σ= 0,04). Таким образом, количество капитала, которое выбывает каждый год, cоставляет σ·k. На графике показано, как выбытие зависит от запасов капитала.
σ К