Доходность облигации
Нормативная база операций с облигациями корпораций
Особую роль в формировании рынка корпоративных облигаций сыграли два документа.
Прежде всего, были внесены незначительные, но чрезвычайно полезные изменения в налоговое законодательство, стимулирующие организации активнее выпускать корпоративные облигации. В соответствии с постановлением Правительства Российской Федерации от 26.07.99 г. № 696 были внесены дополнения в «Положение о составе затрат по производству и реализации продукции (работ, услуг), включаемых в себестоимость продукции (работ, услуг), и о порядке формирования финансовых результатов, учитываемых при налогообложении прибыли», согласно которым проценты, уплачиваемые эмитентом по облигациям, обращение которых осуществляется через организаторов торговли на рынке ценных бумаг, уменьшали сумму налогооблагаемой прибыли. При этом для целей налогообложения проценты должны были учитываться в пределах действующей ставки рефинансирования Центрального банка Российской Федерации, увеличенной на три пункта. Согласно этим поправкам организации получили возможность заимствовать капитал на рынке корпоративных облигаций при уровне расходов, сопоставимых с другими формами заимствования, в частности, банковским кредитом. Другим документом была обеспечена возможность инвестирования в корпоративные облигации временно «замороженных» на специальных банковских счетах типа «С» денежных средств нерезидентов в рублях, которые были высвобождены с рынка ГКО-ОФЗ в результате новации государственных ценных бумаг после кризиса 1998 года. В соответствии с Положением Банка России от 23 марта 1999 года 368-П «Об особенностях проведения сделок нерезидентов с ценными бумагами российских эмитентов, выраженными в валюте Российской Федерации и проведении конверсионных сделок» и инструкцией Банка России от 23 марта 1999 года № 79-И «О специальных счетах нерезидентов типа «С» денежные средства нерезидентов, хранимые на специальных счетах нерезидентов типа «С» в уполномоченных банках, могли использоваться для приобретения корпоративных облигаций, выраженных в валюте Российской Федерации, включенных в котировальные листы организаторов торговли и допущенных к размещению у таких организаторов торговли. Именно эти средства на первом этапе часто формировали основной платежеспособный спрос на корпоративные облигации.
Облигация имеет номинал, эмиссионную цепу, курсовую цену и цену погашения.
Номинальная цена — это та величина в денежных единицах, которая обозначена на облигации. Как правило, облигации выпускаются с достаточно высоким номиналом. Например, в США чаще всего выпускаются облигации номиналом 1000 долларов.
Эмиссионная цена облигации - это та цена, по которой происходит продажа облигаций их первым владельцам. Эмиссионная цена может быть равна, меньше или больше номинала. Это зависит от типа облигаций и условий эмиссии.
Цена погашения — это та цена, которая выплачивается владельцам облигаций по окончании срока займа. В большинстве выпусков цена погашения равна номинальной цене, однако она может отличаться от номинала.
Курсовая цена - это цена, по которой облигации продаются вторичном рынке. Если каждая облигация имеет строго определенную номинальную цену, цену погашения и эмиссионную цену, уровень которых зафиксирован при выпуске займа, то курсовая цена претерпевает значительные изменения в течение срока жизни облигаций.
Уровень доходности облигации зависит от величины процентной ставки, цены приобретения и погашения облигации. Если облигация приобретена по номиналу и погашается по номиналу доходность такой облигации равна процентной (купонной) стаи Облигация, купленная но цене ниже номинала и погашаемая номиналу или выше номинала, имеет доходность выше, чем купонная ставка. Если цена приобретения выше номинала, а погашение происходит по номиналу, то такая облигация имеет уровень доходности ниже купонной ставки. Большинство долгосрочных облигаций приносят их владельцам фиксированный процентный доход. Если доход выплачивается 1 раз в год, то инвестиционная доходность (IR) определяется по формуле:
I R = D/I, (1)
где D - величина процентных выплат в денежных единицах;
I - цена приобретения облигации.
Если, например, 8% облигация номиналом 1000 долларов, с выплатой дохода 1 раз в год приобретена по номиналу, то инвестиционная доходность будет равна купонной ставке - 8% годовых. Если же облигация приобретена по цене 990 долларов, то инвестиционная доходность составит:
IR= 80/990 = 0,0808 или 8,08%.
Если выплаты по облигации производятся несколько раз в год, то инвестиционная доходность в разные периоды года может оказаться неодинаковой. Например, выпущена 8% облигация номиналом 1000 долларов. Эмиссионная цена равна номиналу. Выплаты производятся два раза в год: 5 января и 5 июля. Инвестиционная доходность за каждый период выплат может быть определена по формуле:
IR= (D/I)x(365(366)/T), (2)
где Т- число дней оплачиваемого периода.
Для любого невисокосного года инвестиционная доходность за период с 5 января по 5 июля будет равна:
IR= (40/1000) X (365/181)= 0,08066 или 8,066%.
А за период с 5 июля по 5 января:
IR= (40/1000) х (365/184) = 0,07934 или 7,934%.
Когда происходит эмиссия облигаций, первому покупателю известны вес параметры выпуска, и он может оценить выгодность вложений своих средств в облигационный заем. Первый фактор, который влияет на его выбор, - это соотношение уровней процентной ставки по облигациям, банковским вкладам и другим финансовым инструментам. Инвестор будет вкладывать средства в покупку облигаций, если это принесет ему примерно такой же доход, как и помещение денег в банк.
Например, банк выплачивает по вкладам 12% годовых. Значит и процентный доход по облигациям должен находиться примерно на том же уровне.
Второй фактор, который оказывает влияние на выбор инвестора, - это ситуация на финансовом рынке. Если в будущем ожидается рост процентных ставок по банковским вкладам, то покупка облигаций окажется невыгодным вложением капитала. И наоборот, если наметилась тенденция к снижению ставок по банковским вкладам, то покупка облигаций может оказаться удачным вложением средств.
Выпуск и приобретение облигаций на длительный срок, особенно в условиях нестабильности финансового рынка, является рискованным мероприятием как для эмитента, так и для инвестора. Если проценты по банковским вкладам растут, потери несет владелец облигаций. При снижении банковских процентных ставок потери несет эмитент облигаций.
Если облигация продастся на вторичном рынке, то покупатель руководствуется теми же соображениями, что и первый инвестор, приобретающий облигации на первичном рынке. А именно, доходность от инвестиций в облигацию должна быть сопоставлена с доходностью по банковским вкладам и другим финансовым инструментам.
При этом может быть несколько ситуаций. Например, банковская ставка составляет 10% годовых. Предлагается именная облигация номиналом 1000 долларов. Процентная ставка- 10%, выплата - 1 раз в год. До погашения облигации остается 6 лет и 90 дней, до выплаты очередной процентной ставки - 90 дней. Необходимо определить курсовую цену облигации.
Процентный доход по облигации должен быть распределен между продавцом и покупателем пропорционально времени владения облигацией. Доход покупателя и продавца может быть определен по формуле:
Dт = D * Т/365(366) (3)
где D - годовой процентный доход по облигации (в денежных единицах);
Dт - процентный доход за период времени Т;
Т - период времени, в течение которого облигация находится в руках продавца или покупателя в днях.
Ясно, что
D = Dтпрод. + Dтпокуп. (4)
Та же формула, если известна процентная ставка, может быть представлена в виде:
DT = DR * Рn * Т/365(366) (5)
где DR - процентная ставка по облигациям (в долях к номиналу);
Рn- номинал облигации.
В приведенном примере процентный доход продавца и покупателя составит соответственно:
Dтпрод. = 100 х (365 – 90)/365 = 75,34 долл.
Dтпокуп = 100 х 90/365 = 24,66 долл.
Однако, по условиям выплаты процентов, если именная облигация продана за 30 дней и более до выплаты процентов, то весь процентный доход получит покупатель, если менее, чем за 30 дней - продавец. Поэтому распределение процентного дохода между продавцом и покупателем обеспечивается за счет соответствующего уровня курсовой цены. В приведенном примере весь процентный доход получит покупатель. Следовательно, рыночная (курсовая) цена должна быть увеличена на величину причитающегося продавцу процентного дохода и может быть определена следующим образом:
Рm = Pn + DTпрод. = Pn + Pn * DR * Т/365 = Pn * (1 + DR * Т/365) (6)
В нашем примере расчетная курсовая цена должна составить:
Pm =1000 x 1 + [0,1 х (275/365)]=1075,34(долл.)
В случае, если продается облигация с купонами (на предъявителя), то расчет курсовой цены производится аналогичным образом, независимо от дня продажи облигации, т. к. весь процентный доход получает покупатель.
Если же продается именная облигация в период менее чем за 30 дней до даты выплаты процентного дохода, то в этом случае процентный доход получит продавец облигации. Значит, курсовая цена должна быть ниже номинала на величину процентного дохода, который причитается покупателю за время владения облигацией с момента покупки до даты выплаты процентного дохода.
Предположим, что именная облигация, о которой речь шла выше, продана за 25 дней до дня выплаты процентного дохода. В этом случае процентный доход будет зачислен на имя продавца облигации, а покупатель получит процентный доход только через год и 25 дней со дня совершения сделки. Между тем ему причитается процентный доход за 25 дней текущего года, т. к. облигация в этот период находится уже у него. Его доход составляет:
D25 = 0,1 х 1000 х 25/365= 6,85(долл.)
Следовательно, приемлемой для покупателя ценой приобретения данной облигации будет являться следующая величина:
Pm=1000 x ( l - 0,l x 25/365) = 993,15 (долл.)
I Продавец уступает облигацию ниже номинала, т. к. знает, что через несколько дней он получит процентный доход по данной облигации за весь год, а не только за период 340 дней, когда облигация находилась в его руках.
Следует иметь в виду, что приведенный метод расчета учитывает только распределение процентного дохода между продавцом и покупателем пропорционально времени нахождения ценной бумаги у продавца и покупателя, но не учитывает то, когда получен этот доход. Между тем в случае заключения сделки с купонной облигацией или именной облигацией в период 30 и более дней до выплаты процентного дохода этот доход получит покупатель. Но он получит доход через определенный период после заключения сделки (иногда довольно значительный). И если покупатель выплатит продавцу причитающуюся тому долю процентного дохода в момент заключения сделки, то он понесет убытки, т. к. будущая стоимость денег всегда меньше их настоящей стоимости. Чем больше период времени от момента заключения сделки до дня выплаты процентного дохода, и чем выше уровень банковского процента, тем больше разница между настоящей и будущей стоимостью денег и тем больше сумма возможных потерь покупателя. Поэтому величину процентного дохода, причитающегося продавцу, следует продисконтировать за период от момента заключения сделки до выплаты процента, приняв за норму дисконта уровень процентной ставки по банковским вкладам.
Все высказанные соображения, разумеется, должны быть приняты в расчет, но окончательная курсовая цена облигации будет зависеть также от соотношения спроса и предложения на данный вид ценных бумаг.
Выше мы рассмотрели наиболее простой случай определения курсовой цены облигации, предполагая, что процентная ставка по облигациям и банковским вкладам одинакова. В действительности такое совпадение встречается довольно редко, т. к. долгосрочные облигации выпускаются на длительный срок, в течение которого ставка по банковским вкладам может быть как выше, так и ниже процентной ставки по облигациям. В этих условиях приведенные выше соображения для определения курсовой стоимости облигации не годятся. Рассмотрим пример:
На вторичном рынке продаются облигации акционерного общества номиналом 1000 долл., процентная ставка 10% годовых с выплатой процентов 1 раз в год; погашение облигации - через 4 года. Покупатель первый раз получит процентный доход ровно через один год со дня покупки. Банк по вкладам выплачивает 20% годовых. Спрашивается, какая курсовая цена может быть приемлемой для покупателя?
Цена приобретения облигации (курсовая цена), которая может обеспечить инвестору уровень доходности, равный доходности по банковским вкладам, может быть определена по формуле:
Pm = Pn x (DR/DRb), (7)
где Pm - курсовая (рыночная) цена облигации;
Pn - номинал облигации;
DRo- процентная ставка по облигациям;
DRb- процентная ставка по банковским вкладам.
Например,
Pm= 1000 х (0,1/0,2)= 500(долл.).
Положив 500 долл. в банк, владелец денег получит 100 долл. годового дохода. Тот же доход принесет ему покупка облигации по курсовой цене 500 долл. Однако расчет на этом не заканчивается. Посмотрим, какую сумму будет иметь инвестор через 4 года, когда произойдет погашение облигации. Размер банковского вклада за этот период времени рассчитывается по формуле:
In = I (1+ DRb)n, (8)
где I - первоначальные инвестиции;
In - размер возросших инвестиций в n-ном году;
DRb - процентная ставка по банковским вкладам;
n - число расчетных лет.
Итак, сумма банковского вклада к концу четвертого года составит:
I4= 500 х (1+ 0.2)4- 1036,8(долл.).
А какую сумму будет иметь инвестор к концу четвертого года, если купит облигацию за 500 долл. (номинал облигации 1000 долл.)? Эта сумма будет складываться из ежегодного процентного дохода в сумме 100 долл. и банковского процента на этот доход. Получив 100 долл. в конце первого года, владелец облигации может положить эту сумму в банк под 20% годовых сроком на 3 года. К концу четвертого года эта сумма возрастет до:
100 х (1+ 0,2)3= 172,8(долл.).
Сумма, полученная в конце второго года и положенная в банк, к концу четвертого года составит:
100 х (1 + 0,2)2 = 144 (долл.).
А соответствующая процентная выплата за третий год в конце четвертого года будет равна:
100 х (1 + 0,2) = 120 (долл.).
В конце четвертого года владелец облигации получит процентный доход за четвертый год в размере 100 долл. и номинальную стоимость облигации в размере 1000 долл. Следовательно, он будет иметь на руках сумму:
172,8 + 144 + 120 + 100 + 1000 = 1536,8(долл.).[6]
Разумеется, продавец прекрасно понимает, что если он продает облигацию за 500 долл., то понесет убытки. Вопрос, следовательно, сводится к тому, чтобы определить, какую сумму нужно вложить сегодня в банк, чтобы через 4 года эта сумма увеличилась до 1536,8 долл. при условии сохранения банковских ставок на уровне 20% годовых?
Искомая величина определяется по вышеуказанной формуле, когда неизвестной является первоначальная величина инвестиций I:
I = In/(1 + DRb)n (9)
Для приведенного примера:
I= 1536,8/(1 + 0.2)4= 741,13(долл.).
Вложив сумму в размере 741 долл. в банк, инвестор через 4 года будет иметь на своем счету в банке 1536,8 долл. Купив облигацию за 741 долл., инвестор через 4 года будет иметь такую же сумму денег. Величина, равная 741 долл., и будет являться ориентиром для установления окончательной цены сделки. Если ожидается понижение процентных ставок по банковским вкладам, то это будет действовать на цену сделки в сторону ее повышения, и наоборот, тенденция к повышению банковской ставки может привести к снижению цены сделки. Окончательный уровень цены будет установлен также в зависимости от степени риска данного вида инвестиций.
Под влиянием всех перечисленных факторов складывается определенное соотношение между спросом и предложением ценных бумаг и формируется их цена, которая устраивает участников сделки[7].
[1] Курс экономики/Под ред. Райзберга Б.А. – М.: ИНФРА-М, 2001. С.378.
[2] Макарова С.А. Рынок ценных бумаг и биржевое дело. – СПб, СпецЛит, 2005. С.73-74.
[3] Макарова С.А. Там же. С.75
[4] Мобиус М. Руководство для инвесторов по развивающимся рынкам. – М.: Инвестиционная компания «Атон», 2005. С.178.
[5] Бородулин В. Рынок ценных бумаг США. – М.: Московская центральная фондовая биржа, 2002. С.176.
[6] Бочаров В.В. Финансовый анализ: Управление денежными потоками; Инвестиционная деятельность; Ликвидность хозяйствующего субъекта. – СПб, Питер, 2006. С.139.
[7] Финансовый менеджмент: Учебник. /Под ред. Ковалевой А.М. – М.: ИНФРА-М, 2007. С.201.