Линейчатые и нелинейчатые поверхности.

Линейчатые поверхности — поверхности, которые образуются с помощью прямой линии. Нелинейчатые поверхности — поверхности, которые образуются с помощью кривой линии. Развертывающиеся поверхности — поверхности, которые после разреза их по образующей могут быть совмещены с плоскостью без наличия разрывов и складок. Неразвертывающиеся поверхности — поверхности, которые не могут быть совмещены с плоскостью без наличия разрывов и складок. Поверхности с постоянной образующей — поверхности, образующая которых не изменяет своей формы в процессе образования поверхности. Поверхности с переменной образующей — поверхности, образующая которых изменяется в процессе образования поверхности.

 

Линейчатые развертываемые поверхности:

1. Конические поверхности задаются движением прямой линии l, проходящей через неподвижную точку М, по некоторой направляющей кривой линии а. (рис 128)

2. Цилиндрические поверхности задаются движением прямой, параллельной некоторому направлению, по заданной направляющей кривой. (рис 129)

3. Поверхность с ребром возврата (торс) образуется движением прямолинейной образующей l по некоторой кривой а так, что она остается касательной в каждой точке кривой.

Линейчатые неразвертываемые поверхности:

1) Цилиндроидобразован движением прямой, параллельной заданной плоскости параллелизма α, по двум пространственным кривым a и b.

2) Коноид образован движением прямой по одной прямолинейной направляющей n, по другой криволинейной направляющей m, оставаясь параллельной некоторой плоскости параллелизма α || π1.

3) Гиперболический параболоид, или косая плоскость, задается двумя скрещивающимися прямыми направляющими АВ, CD и плоскостью параллелизма α(απ1).

4) Однополостный гиперболоид образуется движением прямолинейной образующей l по трем прямолинейным скрещивающимся направляющим а, b, c.

5) Косой цилиндр с тремя направляющими образуется движением прямолинейной образующей по трем направляющим, одна из которых обязательно кривая.

Нелинейчатые неразвертываемые поверхности:

1) Эллипсоид трехосный образован движением переменного эллипса вдоль одной из трех его осей Х, Y, Z . Образующие эллипсы подобны.

2) Эллиптический параболоид образуется движением деформирующегося эллипса по двум направляющим параболам m и n

3) Двуполостный гиперболоид образуется движением изменяющегося эллипса по направляющей гиперболе вдоль действительной оси.

 

18. Точки и линии на поверхности.

Точка принадлежит поверхности, если она расположена на линии, принадлежащей поверхности. На поверхностях вращения в качестве таких линий удобно использовать параллели. Если на поверхности вращения (рис. 8.9) дана проекция М2, то для нахождения параллели, которой принадлежит точка М, проводим через М фронтально-проецирующую плоскость s (М2 ϵ s), такую что s ⊥ m. Тогда линия пересечения кривой поверхности с плоскостью s и даст искомую параллель. Радиус параллели равен расстоянию от оси вращения m1 до точки поверхности 11. Этим радиусом проводим окружность с центром в точке m1 (горизонтальной проекции оси вращения) и получаем горизонтальную проекцию параллели. На ней находим горизонтальные проекции точки М: М1 — на видимой стороне кривой поверхности, а М’1 — на невидимой.

Линия принадлежит поверхности, если все ее точки принадлежат этой поверхности. Исключение составляет случай, когда линия представлена прямой, а поверхность — плоскостью. В этом случае для принадлежности прямой плоскости достаточно, чтобы хотя бы две точки ее принадлежали этой поверхности.

Если линия не принадлежит поверхности, то они пересекаются. Простейшим случаем является пересечение с поверхностью прямой линии. Задача решается путем заключения данной линии в какую-либо проецирующую плоскость и построением натуральной величины сечения, из которого легко определить точку входа и выхода прямой.