И выборочные характеристики
При анализе какого-либо экономического показателя Х в фиксированный момент времени (либо без учета фактора времени) наблюдаемые его выборочные значения х1, х2, …, хn обычно упорядочивают по возрастанию. Разность между максимальным и минимальным значением СВ Х называется размахом выборки.
Пусть количество различных значений в выборке равно k (k £ n). Значения xi, i = 1, 2, …, k называются вариантами выборки. При этом х1 < x2 < … < xk. Если значение хi встретилось в выборке ni раз, то число ni называется абсолютной частотой значения хi, а величина – относительной частотой значения хi. Тогда наблюдаемые выборочные значения можно представить в виде вариационного (статистического) ряда (табл. 1.1).
Таблица 1.1
X | x1 x2 … xk |
ni | n1 n2 … nk |
… |
При этом , .
По вариационному ряду можно построить эмпирическую функцию распределения для СВ Х.
Эмпирической (выборочной) функцией распределения Fn(x) будем называть относительную частоту (статистическую вероятность) появления события, заключающегося в том, что СВ Х примет значение, меньше указанного х, т. е.:
Fn(x) = ω(X < x). (1.29)
По определению Fn(x) обладает следующими основными свойствами:
1. 0 £ Fn(х) £ 1.
2. Fn(x) = 0 при Х £ х1; Fn(x) = 1 при X > xk.
Эмпирическая функция распределения Fn(x) является оценкой функции F(x) = P(X < x), которую в этом случае следует называть теоретической функцией распределения.
Пример 1.2. Анализируется прибыль Х (%) предприятий отрасли. Обследованы n = 100 предприятий, данные по которым занесены в следующий вариационный ряд [11]:
Х | |||||
ni | |||||
0,05 | 0,2 | 0,4 | 0,25 | 0,1 |
Необходимо определить эмпирическую функцию распределения Fn(x) и построить ее график.
Рис. 1.7.
При большом объеме выборки ее элементы могут быть сгруппированы в интервальный вариационный ряд. Для этого n наблюдаемых значений выборки х1, х2, …, хn разбивают на k непересекающихся интервалов равной ширины h (h – шаг разбиения). Пусть ni – количество наблюдаемых значений СВ Х, попадающих в i-й интервал; – относительная частота попадания СВ Х в i-й интервал. Тогда интервальный вариационный ряд имеет вид:
Таблица 1.2
[xi - 1, x) | [x0, x1) | [x1, x2) | … | [xk - 1, xk) |
ni | n1 | n2 | … … | nk |
Интервальный вариационный ряд наглядно может быть представлен в виде гистограммы – графика, где по оси абсцисс откладываются интервалы, на каждом из которых строятся прямоугольники с высотой и площадью, пропорциональной относительной частоте попадания СВ Х в данный интервал. На i-м интервале строится прямоугольник высотой . На основании гистограммы обычно выдвигают предположение о виде закона распределения исследуемой СВ Х.
Задача (гипотеза) о соответствии теоретического и статистического распределения обычно рассматривается с помощью статистического критерия Пирсона [16], основанного на распределении (Приложение 6).
Поскольку на практике обычно работают с выборкой, нас будут интересовать выборочные числовые характеристики, которые являются оценками соответствующих генеральных характеристик.
Если в формуле для математического ожидания дискретной СВ (1.4) положить равными вероятности каждого исхода pi = 1/n, то получим выборочное среднее арифметическое наблюдаемых значений выборки для СВ Х:
. (1.30)
При задании выборки в виде вариационного ряда
. (1.31)
Соответственно, для выборочной дисперсии получим формулы:
или (1.32)
.
Зачастую для вычисления Dв(Х) удобно использовать выражение:
. (1.33)
Выборочное среднее квадратическое отклонение определяется как
. (1.34)
При задании выборки в виде интервального вариационного ряда в формулах (1.31), (1.32) вместо xi рассматривается среднее значение i-го интервала .
Выборочный коэффициент вариации Vв будет определяться процентным отношением выборочного среднего квадратического отклонения к выборочному среднему:
. (1.35)
Коэффициент вариации – безразмерная характеристика, удобная для сравнения величин рассеивания двух выборок, имеющих различные размерности.
Наиболее распространенными характеристиками взаимосвязи двух СВ являются меры их линейной связи – ковариация и коэффициент корреляции (см. раздел 1.4). Их оценками являются выборочная ковариация Covв(X, Y) и выборочный коэффициент корреляции rxy.
, (1.36)
. (1.37)
Здесь .
Известно, что если величины X и Y независимы, то выборочный коэффициент корреляции равен нулю; если rxy равен , то Y и X связаны линейной функциональной зависимостью [16].
Для нахождения выборочных ковариации и коэффициента корреляции необходимо иметь выборку объема n из двумерной генеральной совокупности (Х, Y), где рассматриваются пары значений xi, yi (i = 1, 2, …, n) в ряду наблюдений.
Выборочные оценки числовых характеристик генеральной совокупности обладают теми же основными свойствами, что и их теоретические прототипы.