ГЛАВА 1. БАЗОВЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ
П.Б. Болдыревский, Зимина С.В.
ЭКОНОМЕТРИКА
Учебное пособие
Нижний Новгород
Аннотация
Материал учебного пособия разработан на основе лекций, читаемых авторами в течение ряда лет в Нижегородском государственном университете им. Н.И. Лобачевского студентам экономических специальностей.
В учебном пособии в концентрированном виде представлена современная методология эконометрического моделирования. Рассмотрены основные элементы эконометрики. Изложены понятия парной, множественной регрессионных моделей, моделей временных рядов и их анализа.
Обсуждаются такие вопросы практического многомерного моделирования как гетероскедастичность, мультиколлинеарность, фиктивные переменные, особенности спецификации модели. Учебный материал сопровождается определенным числом вопросов и задач для самопроверки.
Для студентов (бакалавриат) экономических специальностей вузов, а также для магистрантов, аспирантов и специалистов, интересующихся методами обработки статистических данных и экономического анализа.
ПРЕДИСЛОВИЕ
«Эконометрика» как учебная дисциплина, на современном этапе, благодаря своей универсальности и возможности практического использования для анализа реальных экономических объектов, является одним из базовых курсов в системе высшего экономического образования.
В последние годы появились интересные учебники и учебные пособия по эконометрике. Однако, как показывают контакты авторов со студентами, аспирантами, преподавателями и специалистами, занимающимися экономическим анализом, ощущается нехватка доступных учебных пособий по данной дисциплине.
В представленном учебном пособии авторами лаконично и на доступном уровне изложены основные вопросы эконометрического анализа, достаточно глубоко и полно рассмотрены базовые понятия эконометрики и регрессионного анализа.
Учебное пособие ориентировано на начальный курс эконометрики, и, в первую очередь, предназначено для студентов (бакалавриат) экономических специальностей вузов. Представленный учебный материал направлен на формирование соответствующих профессиональных и общекультурных компетенций. Книга также может быть полезна магистрантам, аспирантам, специалистам и руководителям, изучающим статистические методы анализа экономических процессов и интересующимися прикладными исследованиями в области экономики. Изложение учебного материала предполагает, что читатель владеет основами теории вероятностей, математической статистики и линейной алгебры в объеме курса математики экономического или технического вуза.
Пособие состоит из введения, основного учебного материала (главы 1–7) и приложения, содержащего математико-статистические таблицы и методические указания по реализации типовых эконометрических задач на компьютере. В конце книги приведен развернутый предметный указатель основных понятий курса.
Во введении рассмотрены основные цели и задачи эконометрики как науки, а также сформулированы основные понятия и этапы эконометрического моделирования.
Поскольку основой методов и математического инструментария эконометрики являются теория вероятностей и математическая статистика, в первой главе приведены основные положения этих дисциплин, без которых невозможно понимание материала последующих глав. При этом особое внимание уделяется экономическим приложениям теории вероятностей и математической статистики.
В главах 2–7 рассматриваются линейные и сводящиеся к линейным эконометрические модели, как наиболее применимые на практике для анализа и прогнозирования экономических процессов.
Для большей наглядности при изложении материала приводятся примеры с решениями. Применение компьютерных пакетов для оценивания эконометрических моделей рассмотрено авторами учебников [25,28, 31]. Многие задачи начального курса эконометрики, включая имитационное моделирование методом Монте-Карло, могут быть решены с использованием пакета прикладных программ Excel. Решение приводимых в данной книге задач проводится «вручную» с целью отработки соответствующих методов и детального рассмотрения экономического смысла получаемых результатов и выводов. Каждая глава заканчивается вопросами и упражнениями для самопроверки.
Знания и навыки, полученные при изучении данного учебного пособия, позволят читателю проводить самостоятельные эконометрические исследования и приступить к освоению компьютерного моделирования.
ВВЕДЕНИЕ
Понятие «эконометрика» введено в 1926 г. норвежским экономистом и статистиком Рагнаром Фришем (лауреат Нобелевской премии по экономике 1969 года «за создание и применение динамических моделей к анализу экономических процессов») и формально означает «измерения в экономике». Область исследований этой науки на современном этапе достаточно широка и продолжает развиваться. Объектами исследований эконометрики являются экономические явления и системы. В отличие от экономической теории, эконометрика делает упор на установление конкретных количественных взаимосвязей между экономическими объектами и показателями. Английский математик и экономист Джеймс Лайтхилл дает короткое и емкое определение: эконометрика – это статистико-математический анализ экономических отношений. Такой подход указывает на естественную связь эконометрики с экономической и математической статистикой. Однако в рамках эконометрики статистические методы являются лишь информационным обеспечением, которое применяется в дальнейшем для анализа экономических взаимосвязей и прогнозирования. Исходя из вышеизложенного, а также опираясь на высказывания признанных авторитетов в области эконометрики (Э. Маленво, Ц. Грилихес, Л. Клейн), можно дать следующее определение, отражающее сущность развития этого научного направления на современном этапе: эконометрика – это наука, в которой на базе реальных статистических данных строятся, анализируются и совершенствуются математические модели экономических процессов.
Сущность эконометрики заключается в модельном описании функционирования конкретной экономической системы (экономики данной страны, «спроса-предложения» в данное время в данном месте и т. д.). Одним из основных этапов эконометрических исследований является анализ устойчивости построенной модели, отражающей взаимосвязи между экономическими показателями, и проверка ее на адекватность реальным экономическим данным и процессам.
Математическая модель – упрощенное, формализованное представление реального объекта. Наиболее распространенной зависимостью между исследуемой величиной Y и влияющими на нее факторами-аргументами X в экономике является аддитивная линейная форма
Y = b0 + b1X1 + b2X2 + …+ bmXm + εi, (1)
где b0, b1, …, bm – некоторые параметры, которые подлежат определению;
εi – остаток, устраняющий разность между модельным (полученным по набору Xj расчетным образом) и наблюдавшимся значениями анализируемой величины Y, обнаруженную в i-м измерении (i = 1, 2 …n; n – общее число измерений).
Основная задача эконометрического анализа заключается в отыскании значений параметров b, обеспечивающих наименьшую величину ε,а следовательно, наилучшую точность прогноза.
Участвующая в соотношении (1) величина εi, отражает влияние на результирующий показатель Y всех неучтенных факторов и обусловливает стохастический характер зависимости даже при фиксировании всех переменных X. Таким образом, переходя в своих наблюдениях от одного пространственного (или временного) промежутка к другому, мы увидим случайное варьирование Y около некоторого определенного уровня. Это означает, например, что, зная цену на товар и на конкурирующие с ним или дополняющие товары, а также потребительский доход (факторы), мы не можем сказать однозначно, каким будет спрос на данный товар.
Случайную остаточную составляющую εi принято называть случайным отклонением. Случайное отклонение εi является также случайной ошибкой Y по заданным значениям X1, Х2, …, Xm.
Эконометрические модели (линейные и нелинейные) строятся на основе пространственных данных, которые представляют собой набор экономических переменных, взятых в один и тот же момент времени (пространственный срез), или временных рядов и могут содержать одно или несколько уравнений в зависимости от характера взаимосвязи между экономическими показателями.
Основные проблемы эконометрических исследований можно представить в виде следующих этапов:
1. Постановочный этап. Определение и формулировка основных целей модели. Предмодельный анализ экономической ситуации и сущности изучаемого явления. Формирование и обработка информации на основе исходных статистических данных, определение набора возможных факторов и показателей, относящихся к исследуемому объекту.
2. Этап спецификации. Выбор наиболее значимых факторов, участвующих в модели, и математической формы модели, удобной для проведения анализа, т. е. построение самой эконометрической модели.
3. Этап параметризации. Оценка параметров построенной модели на основе имеющихся статистических данных. В решении этой задачи, делающей модель работоспособной, одним из ключевых является вопрос точности используемой статистической информации.
4. Этап верификации. Проверка качества найденных параметров модели и самой модели в целом статистическими методами и сопоставлением модельных и реальных данных. На данном этапе в результате проверки модели на надежность и устойчивость могут быть внесены поправки в задачу спецификации, а именно, откорректирована форма модели и уточнен состав факторов-аргументов.
5. Этап внедрения. Использование построенных моделей для объяснения поведения исследуемых экономических показателей и прогнозирования. Уточнение границ применимости модельного анализа.
В последние десятилетия наблюдается стремительное развитие эконометрики как научной дисциплины, в которой используется достаточно тонкий аппарат современной математики. В тоже время, нельзя забывать, что базисом эконометрики является ее экономическая составляющая. Именно экономика определяет постановку задачи и исходные предпосылки, а результат математического моделирования представляет практический интерес лишь в том случае, если удается его экономическая интерпретация. Разработка специальных компьютерных программ, а также совершенствование методов анализа способствуют все более широкому внедрению методов эконометрического моделирования в практические исследования современных социально-экономических процессов.
ГЛАВА 1. БАЗОВЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ