Теплопроводность

Положите загнутой конец железной кочерги в горящий камин — и уже через пару минут вы не сможете притронуться к ее свободному концу, хотя он находится на значительном удалении от пламени. А происходит это в результате того, что любой металл обладает высокой теплопроводностью, и жар огня от разогретого конца кочерги очень быстро распространяется по всей ее длине.

А обусловлена высокая теплопроводность металла следующим: атомы металла организованы в трехмерную кристаллическую решетку и постоянно вибрируют около своего среднестатистического положения. Атомы погруженного в огонь конца кочерги под воздействием соударения с быстро движущимися молекулами углей и раскаленного газового пламени быстро разогреваются и начинают вибрировать значительно интенсивнее. Очень скоро температура прогреваемого конца кочерги практически сравнивается с температурой пламени, о чем можно судить по тому, что металл разогревается докрасна.

Одновременно сами термически возбужденные атомы, соударяясь с соседними атомами, передают последним энергию теплового движения, и те, в свою очередь, также очень быстро разогреваются до температуры, близкой к температуре горения. При этом, отдав свою тепловую энергию соседям, атомы погруженного в пламя конца кочерги практически тут же компенсируют ее за счет непрерывного поступления тепловой энергии, выделяющейся при горении.

Таким образом, посредством цепочки межатомных взаимодействий теплота быстро распространяется вверх по ручке кочерги, постоянно пополняясь за счет энергии сгорания дров, пока не достигнет рукояти, которую вы держите в ладони, и тогда вы, почувствовав, как она нагрелась, вынуждены будете выпустить кочергу во избежание ожога.

Таким образом, теплопроводность представляет собой механизм теплового обмена посредством соударения между отдельными атомами или молекулами теплопроводящего вещества. То есть тепловое движение распространяется по веществу, однако сами атомы или молекулы остаются жестко закрепленными внутри его структуры, и переноса вещества, как такового, мы не наблюдаем.

 

Уравнение, описывающее механизм теплопроводности, выглядит следующим образом:

О = А х ДТ/Я,

где О — количество передаваемой тепловой энергии, А — площадь сечения теплопроводящего тела, АТ — разность температур между двумя точками, а Я — тепловое сопротивление материала, характеризующее, насколько он тормозит теплопередачу. В вышеприведенном примере с кочергой, одним концом опущенной в камин, АТ равняется разнице между температурой пламени на одном конце и комнатной температурой воздуха на другом, А — площади сечения железного прута, из которого сделана кочерга, а Я определяется свойствами металла. В целом же приведенная формула подсказывает, что чем больше разность температур и чем больше площадь поперечного сечения, тем большее количество теплоты будет передаваться. В то же время при фиксированных значениях разности температур и площади поперечного сечения количество передаваемой теплоты будет обратно пропорционально тепловому сопротивлению, то есть чем оно выше, тем медленнее будет нагреваться рукоять. Поэтому материалы с высокими значениями Я (например, асбест, стекловолокно или пух) являются хорошими теплоизоляторами.