Генрих VI, ч. 2
В том, что называют гражданскими «спорами», на самом деле часто имеется широкий простор для кооперирования. То, что выглядит как конфронтация, можно, проявив немного доброй воли, превратить во взаимовыгодную игру с ненулевой суммой. Возьмем, например, бракоразводный процесс. Удачное супружество-это, безусловно, игра с ненулевой суммой, с бьющим через край взаимным кооперированием. Но даже после того, как брак распадется, имеются всевозможные причины, по которым супружеская пара могла бы выиграть, продолжая кооперироваться и рассматривая свой развод также как игру с ненулевой суммой. Если даже они не считают благополучие своих детей достаточно веской причиной, то следовало бы подумать о том ущербе, который нанесут семейному бюджету гонорары двух адвокатов. Итак, вероятно, разумная и цивилизованная пара начнет с того, что отправится вместе к одному адвокату, не правда ли?
Увы, на самом деле этого никто не делает. Во всяком случае в Англии и до недавнего времени во всех пятидесяти штатах США закон или, что гораздо важнее, собственный профессиональный кодекс адвоката не разрешает им этого. Клиентом данного адвоката может быть только один из супругов. Другому отказывают с порога, и он либо остается без юридической помощи, либо вынужден обратиться к другому адвокату. Вот тут-то и начинается комедия. В разных комнатах, но в один голос, оба адвоката немедленно начинают рассуждать о «нас» и о «них». «Мы», как вы понимаете, относится не ко мне и моей жене:
«мы»-это я и мой адвокат, а «они»-моя жена и ее адвокат. Когда дело передается в суд, то оно регистрируется под названием «Смит против Смит». Противостояние принимается за некую данность, независимо от того, действительно ли супруги чувствуют себя противниками или, быть может, они договорились не выходить за рамки благоразумного дружелюбия. И кто выигрывает от того, чтобы относиться к этому как к перебранке: «я выиграл, ты проиграла»? Вероятно, только адвокаты.
Злополучные супруги втянуты в игру с нулевой суммой. Для адвокатов, однако, дело Смит против Смит прекрасная выгодная игра с ненулевой суммой, в которой Смиты обеспечивают выплаты, а два профессионала доят общий счет своих клиентов с помощью тщательно зашифрованного сотрудничества. Один из приемов, используемых ими при этом, заключается в том, чтобы выдвигать предложения, которые, как они оба прекрасно знают, другая сторона не примет. Это побуждает к ^контрпредложению, которое опять-таки неприемлемо, о чем адвокатам тоже известно. И так это продолжается дальше. Каждое письмо, каждый телефонный разговор между кооперирующимися «противниками» добавляет еще одну пачку денег к их гонорару. В случае удачи вся эта процедура может растянуться на месяцы или даже годы, сопровождаясь соответственным ростом расходов. Адвокаты не встречаются друг с другом, чтобы разработать все это. Напротив, как это ни парадоксально, именно их скрупулезно соблюдаемая обособленность служит главным орудием их кооперирования за счет клиентов. Адвокаты могут даже и не осознавать, что они делают. Как летучие мыши-вампиры, о которых мы поговорим в конце этой главы, они играют по хорошо разработанному ритуалу. Система действует безо всякого надзора или организации. Вся она направлена на то, чтобы втягивать нас в игры с нулевой суммой для клиентов, но весьма ненулевой - для адвокатов.
Способ, который рекомендует Шекспир, слишком радикален. Пожалуй, проще было бы добиться изменения закона. Но большинство членов парламента - юристы по специальности, и по складу ума им ближе игра с нулевой суммой. Трудно представить себе более враждебную атмосферу, чем та, что царит в Британской палате общин. (На судебных заседаниях по крайней мере соблюдаются приличия при прениях сторон. Им и следует это делать, ибо «Мой ученый коллега и я» прекрасно сотрудничают и довольные направляются в банк.) Быть может, законодателей, действующих из самых лучших побуждений, и способных внять голосу совести адвокатов следовало бы обучить начаткам теории игр. Справедливости ради необходимо добавить, что некоторые адвокаты выступают в прямо противоположной роли, убеждая клиентов, испытывающих непреодолимое желание ввязаться в драку «с нулевой суммой», что им лучше было бы достигнуть в суде соглашения, которое принесло бы им ненулевую сумму.
А что можно сказать о других играх, в которые мы играем? Какие из них относятся к играм с ненулевой, а какие-с нулевой суммой? И, поскольку это не одно и то же, какие аспекты жизни мы воспринимаем как нулевую или ненулевую сумму? Какие аспекты человеческой жизни способствуют развитию «зависти», а какие побуждают к кооперированию против «банкомета»? Подумайте, например, о спорах относительно зарплаты и дифференцированной оплаты труда. Когда мы ведем переговоры о том, чтобы нам повысили зарплату, движет ли нами зависть или же мы кооперируемся, чтобы максимизировать наши реальные доходы? Исходим ли мы в реальной жизни, так же как в психологических экспериментах, из допущения, что мы участвуем в игре с нулевой суммой, когда на самом деле это не так? Я просто ставлю эти трудные вопросы. Ответы на них выходят за пределы тематики этой книги.
Футбол-игра с нулевой суммой. Во всяком случае обычно. Иногда он может превратиться в игру с ненулевой суммой. Так случилось в 1977 г. в Английской футбольной лиге (Ассоциация футбола, или соккера; другие игры, называемые футболом,-рэгби. Австралийский футбол, Американский футбол, Ирландский футбол и т. и.-обычно также представляют собой игры с нулевой суммой). Команды, входящие в футбольную лигу, разбиты на четыре дивизиона. Клубы каждого дивизиона играют между собой, набирая очки за каждый выигрыш и каждую ничью в течение данного сезона. Находиться в первом дивизионе престижно, а также прибыльно для клуба, поскольку это обеспечивает большое число зрителей. В конце каждого сезона три клуба первого дивизиона, занявшие последние места, переводят на следующий сезон во второй дивизион. Такое перемещение, очевидно, рассматривается как ужасный удар судьбы, и чтобы избежать его, стоит затратить огромные усилия.
Последняя игра в футбольном сезоне 1977 г. происходила 18 мая. Два из трех кандидатов на вылет из первого дивизиона уже были определены, но третий еще оставался под вопросом. Это определенно должна была быть одна из трех команд: Сандерленд, Бристоль или Ковентри. Таким образом, этим трем командам было за что бороться в ту субботу. Сандерленд играла против четвертой команды (пребывание которой в первом дивизионе не подвергалось сомнению), а Бристоль и Ковентри играли друг против друга. Было известно, что если Сандерленд проиграет, то командам Бристоль и Ковентри достаточно закончить игру вничью, чтобы остаться в первом дивизионе. Если же Сандерленд выиграет, то либо Бристоль, либо Ковентри будет переведена из первого дивизиона. Две решающие игры должны были проходить одновременно. Однако фактически игра Бристоль-Ковентри началась на пять минут позднее. Поэтому результаты игры с участием команды Сандерленд стали известны до окончания игры Бристоль-Ковентри. Это и послужило завязкой всей дальнейшей сложной истории.
Большая часть игры между командами Бристоль и Ковентри проходила, выражаясь языком современных спортивных комментаторов, «в быстром темпе», а по временам бурно; это была увлекательная (если вы любите подобные зрелища) борьба, в которой успех все время переходил от одной команды к другой. В результате нескольких блестяще забитых голов с обеих сторон счет матча к восемнадцатой минуте был 2:2. Затем, за две минуты до конца игры, пришло известие с другого поля, что Сандерленд проиграл. Немедленно тренер команды Ковентри передал эту новость на гигантское светящееся электронное табло, находящееся в конце поля. Очевидно, что все 22 игрока умели читать и все они поняли, что им теперь незачем надрываться. Обеим командам нужна была всего лишь ничья, чтоб избежать перевода во второй дивизион. И в самом деле теперь было бы совершенно неразумно изо всех сил стараться забивать голы, тем более, что при этом, отвлекаясь от защиты собственных ворот, они рисковали проиграть и в конечном счете оказаться во втором дивизионе. Обе команды стали настойчиво стремиться сделать ничью. Приведу слова того же комментатора: «Болельщики, которые несколько секунд назад, когда Дог Гиллис на 80-й минуте забил го." в ворота Ковентри, сравняв счет. были злейшими врагами, внезапно объединились в дружном ликова нии. Судья Рон Чаллис беспомощно наблюдал за игроками, лениво гонявшими мяч по полю». То, что было ранее игрой с нулевой суммой. вдруг, в результате сообщения. поступившего из внешнего мира превратилось в игру с ненулевой суммой. Пользуясь принятой нами выше терминологией, как по волшебству, появился внешний «банкир» и это позволило обеим командам, Бристоль и Ковентри, извлечь выгоду из одного и того же исхода игры-из ничьей.
Зрелищные виды спорта, такие как футбол, обычно представляют собой игры с нулевой суммой, и по весьма веской причине. Зрителям гораздо интереснее смотреть на игроков, неистово борющихся друг с другом за победу, чем наблюдать, как они дружески достигают молчаливого согласия. Однако реальная жизнь, будь то жизнь человека или растений и животных, учреждалась не для того, чтобы развлекать зрителей. Многие ситуации в подлинной жизни, в сущности, мало чем отличаются от игры с ненулевой суммой. Природа нередко выступает в роли «банкомета», так что индивидуумы могут извлекать выгоду из успехов друг друга. Им нет нужды повергать на землю противников для того, чтобы достигнуть благополучия. Не отступая от основных законов эгоистичного гена, мы можем видеть, как кооперирование и взаимопомощь способствуют процветанию даже в мире, в котором преобладает эгоизм. Мы можем убедиться, что добрые парни могут финишировать первыми (в аксель-родовском смысле).
Однако все это реализуется лишь в случае итерированной игры. Игроки должны знать (или знать в кавычках), что происходящая между ними в данной момент игра-не последняя для них. «Тень будущего», о которой говорил Аксельрод, должна быть длинной. Но насколько длинной? Не может же она быть бесконечной. С теоретической точки зрения продолжительность игры не имеет значения; важно лишь, чтобы ни один из игроков не знал, когда она закончится. Допустим, что мы с вами играем друг против друга и нам обоим известно, что в этой игре должно быть сыграно 100 партий. Разумеется, мы оба понимаем, что 100-я партия, будучи последней, будет равносильна простой одноразовой игре Парадокс заключенного. Поэтому единственной разумной стратегией для любого из нас в 100-й партии должна быть Отказываюсь, и каждый из нас может допустить, что другой игрок вычислит это и твердо решит в последней партии тоже отказаться. Поэтому последнюю партию можно списать со счета как предсказуемую^ Но теперь эквивалентом одноразовой игры становится 99-я партия и единственным разумным выбором для каждого игрока в этой предпоследней игре также будет Отказываюсь. К тому же решению им придется прибегнуть в 98-й партии и так далее в обратном направлении. Два совершенно рационально мыслящих игрока, каждый из которых предполагает, что другой строго рационален, могут лишь отказываться, если оба они знают, сколько партий им предстоит играть. Поэтому специалисты по теории игр, рассуждая об Итерированном или Повторяющемся Парадоксе заключенных, всегда исходят из допущения, что конец игры непредсказуем или известен только банкомету.
Даже если число партий в игре точно не известно, в реальной жизни часто возможно из статистических соображений высказать догадку о том, сколько еще продлится игра. Такая оценка может составить важную часть стратегии. Если я замечаю, что банкомет суетится и посматривает на часы, то можно сделать вывод, что игра подходит к концу, и у меня возникнет соблазн отказываться. Если я заподозрю, что вы тоже обратили внимание на поведение банкомета, то у меня может возникнуть опасение, что вы тоже собираетесь отказываться, и я, возможно, постараюсь отказаться первым. В особенности потому, что я боюсь, что вы боитесь, что я ...