Технічні характеристики ЕМА

Нижче розглядаються основні (найбільш загальні) тех­нічні характеристики електронної медичної апаратури. В ос­нов­ному ці характеристики стосуються діагностичної апа­ратури і містяться у технічній інструкції. З огляду на ці характеристики, можна судити про переваги приладу, можливості його використання для розв’я­зання клінічних задач.

1. Чутливість S визначається мінімальними змінами сиг­налу, котрі можна незмінно спостерігати і реєструвати. Завдяки електроніці стало можливим вимірювати надто малі значення величин, що нас цікавлять (напруги U = 10–6–10–7 B, струми I = 10–9 А, відстані L = 10–8 м тощо). Якщо при­стрій має перетворювач (датчик, підси­лювач тощо), чут­ливість S визначається відношенням амплітуди вхідного сиг­налу Авх до амплітуди сигналу на виході Авих:

S = Авх / Авих.

Наприклад, чутливість датчика тиску S = 20 мкВ/мм Нg означає, що при зміні вхідного сигналу (тиску) на 1 мм Нg на виході генерується сигнал амплітудою в 20 мкВ.

Багато приладів налагоджені на стандартну чутливість за допомогою регулювачів сигналу на виході. Так, стандарт­на чутливість електрокардіографа 10 мм/мВ (максимальна чут­ливість 15–20 мм/мВ).

2. Лінійність – здатність пристрою зберігати постійну чут­ливість в усьому діапазоні величини, яка вимірюється або реєстру­ється. Для лінійного перетворювача справедливе спів­відношення:

Авих = S · Авх,

де S – постійна чутливість пристрою.

Якщо чутливість пристрою залежить від параметрів вхід­­ного сигналу (наприклад, амплітуди або частоти), то ви­ни­кають нелінійні спотворення при утворенні сигналу. Для нелінійного перетворювача характерною є така залежність:

Авих = S(Авх)·Авх.

Нелінійні спотворення обумовлені наявністю частотноза­леж­них опорів у ланцюгу пристрою (опори ємності, ін­дук­тивності), а також нелінійністю робочих характеристик пе­ре­­тво­рювачів та функціональних елементів (транзисторів, елек­тронних ламп тощо).

У технічних характеристиках ЕМА лінійність оціню­єть­ся за частотною характеристикою приладів, а також за ве­ли­чиною амплі­туди сигналу, який реєструється без спотво­рення. Відхилення від лінійної характеристики подають у про­центах або у децибелах. Наприклад, “завал” на граничних частотах не більше 10% означає, що амплітуда сигна­лу, який реєструється, відрізняється від істинної Авх на ΔА = 0.1 Авх; затухання на верхніх частотах 10 дБ (або 1 Б) свідчить, що ці величини відрізняються у 10 разів, оскільки за означенням 1 Б = lg (А2 1), при А2= 10 А1.

Амплітудні спотворення визначають ефективну ширину за­пису сигналу пристроєм, який записує цей сигнал. У тех­ніч­­них даних приладу, як правило, вказані ефективні значен­­­ня і процент нелінійних спотворень.

3. Динамічний діапазон – визначається межами вимі­рю­ва­­ної величини (Аmin – Аmax). Величина мінімального сигналу (Аmin)визначається чутливістю приладу, максимального (Аmax)– нелінійними спотвореннями і міцністю конструкції. Частотний динамічний діапазон визначається величиною не­лінійних спотворень на граничних частотах.


4. Iнерційність – визначається здатністю чутливого еле­мен­та перетворювача стежити за змінами вхідної величини. Перетворювач, що має більшу інерційність, не здатний реагувати на сигнал, що швидко змінюється; нелінійні спотворення у цьому випадку перевищують припустимі зна­чен­ня. Наприклад, на першому записуючому пристрої кар­діо­графу неможливо здійснити без спотворення запис фонокардіограми (ФКГ), оскільки рухлива головка пристрою, що записує, не встигає слідкувати за швидко­змін­ни­ми сигналами ФКГ.

5. Точність – визначається похибками вимірювань, реє­с­т­ра­ції, перетворень. Клас точності вимірювальної медич­ної апа­ратури визначають величиною відносної похибки у від­сот­ках. Наприклад, клас точності реографа 2.0 означає, що по­хибка вимірювань не перевищує 2%.

6. Стабільність роботи – визначається здатністю пристрою зберігати під час роботи свої характеристики по­стійними. Стабільність оцінюється зміною фізичної величи­ни на виході ΔА за одиницю часу при незмінному вхідному сигналі А. Величина цього відхилення (дрейф) визначається як відношення:

,

де Dt – проміжок часу.

Наприклад, дрейф підсилювача постійного струму не пе­ре­вищує 0.5% за хвилину. Це означає, що для даного під­си­лювача протягом хвилини сигнал на виході може змі­нитися на 0.5% А свого значення за рахунок нестабільної ро­боти елементів підсилювача. Дрейф може суттєво збіль­ши­тись при зміні умов роботи приладу (температури, тиску, во­логості). У цьому випадку в паспортних даних приладу при­­водиться величина дрейфу, віднесена до величини зміни зов­нішнього фактора (наприклад, D = 0.3%/°C).

Медичні прилади та пристрої повинні задовольняти певним специфічним вимогам, які зумовлені особливостями їх експлуатації у клінічній практиці:

а) атравматизм (безпечність експлуатації, особливо при введенні апаратів або їх частин всередину організму);

б) обмеженість лінійних розмірів пристроїв, які викори­сто­вуються для отримання даних під час досліджень (особли­во внутрішньоорганних та порожнинних);

в) можливість багаторазової стерилізації окремих частин апарата;

г) підвищена надійність, безвідмовність роботи в умовах інтенсивної експлуатації тощо.

5.2. СЕМІНАР “Взаємодія електромагнітного поля з біологічними тканинами”

(скорочення в тексті: ЕМП – електромагнітне поле, ЕП – еле­ктричне поле, МП – магнітне поле, БТ – біологічні тканини)

Контрольні питання для підготовки до семінару

1. Основні характеристики ЕМП.

2. Основні процеси, які обумовлюють дію ЕМП на БТ:

2.1. Виникнення електричних струмів:

а) іонні струми провідності (постійні, змінні: низько- та висо­ко­час­тотні);

б) індукційні струми;

в) струми зміщення.

2.2. Явища поляризації.

2.3. Резонансне поглинання енергії ЕМП.

3. Основні фізіотерапевтичні методики, які використовують елек­трич­­ні стру­ми; явища поляризації та резонансне поглинання енер­­гії ЕМП з лікувальною метою.

4. Теплова дія ЕМП на БТ:

4.1. Кількість теплоти, яка виділяється при діатермії, індук­то­тер­мії, УВЧ- і НВЧ- терапії.

4.2. Механізм прогрівання тканин, котрі мають різну електро­про­від­ність (діелектриків, низько- та високоомних провідників).

5. Специфічна дія ЕМП на БТ. Фізичні основи процесів, які викли­ка­­ють зміну структури біологічно активних молекул, функцій біо­­логічних мембран, кіне-тики ферментативних процесів тощо.