Динамическое освещение

Рендер Diablo3. Как это работает

Как устроены графические движки популярных игр с мировым именем? Какие технологии применяют разработчики в самых крупных игровых компаниях? Действительно ли, чтобы сделать красивую игровую графику необходимо применять самые передовые технологии современной 3D графики? На эти вопросы мы попробуем ответить на примере рендер части игры Diablo3, от компании Blizzard Entertainment.

Я давно занимаюсь в сфере игровой разработки, и мое хобби реверс-инжиниринг графических движков популярных игровых продуктов. Когда вышел долгожданный сиквел серии Diablo, я сразу захотел узнать, какие технологии использовали разработчики в своем детище.

Рендер игры построен на базе технологии Direct3D 9. Это позволяет покрыть более широкую аппаратную базу видеокарт, а те расширенные возможности, которые предлагает D3D 10 и 11 зачастую либо вовсе не нужны, либо реализуемы теми или иными способами в девятой версии.

Тени

Для всей статической геометрии уровня используются предрасчитанные лайтмапы. Да-да, старый добрый способ, который применяется со времен, когда 3D-акселераторы стали поддерживать мультитекстурирование.

Лайтмапа просчитывается заранее в пакете 3Д моделирования (3ds max, Maya), либо собственным рейтрейсером в редакторе уровней. Одна такая текстура используется для нескольких игровых объектов, либо их частей, если объект крупный (например, террейн).

Для динамических объектов (монстры, фигурки персонажа) используются динамические тени выполненные по технологии “shadow map” (stencil shadows в наше время уже практически не используется). Разработчики решили отступить от классических канонов в этой сфере, и не использовали hardware shadows (текстуры которые могут быть использованы как буфера глубины, и поддерживающие аппаратный Percentage Closer Filtering – PCF), которые предлагают все популярные производителями видеокарт. Вместо этого, была применена технология Variance Shadow Maps. Она позволяет получить мягкие края путем стандартного размытия текстуры тени (для классических карт теней этот метод неприменим, так как усреднение значений глубины пикселя не имеет смысла). Подробности VSM я расписывать не буду (см. полезные ссылки в конце статьи), скажу лишь только, что для ее реализации необходимо хранить 2 значения: глубину пикселя и глубину пикселя в квадрате. Именно второе значение диктует довольно жесткие условия к точности хранения этой информации, поэтому была выбрана текстура формата A32B32G32R32 float. Размер ее при максимальных настройках качества теней 2048х2048.

Процесс создания карты теней стандартный. Рисуем все объекты отбрасывающие тень (окклюдеры) в карту тени с позиции источника освещения. Размываем карту тени сначала по горизонтали, а затем по вертикали. При рендере объектов, которые должны получать тень (ресиверы), семплим шадоу мапу, определяем степень освещенности пикселя и соответственным образом затемняем финальный цвет. Семплинг карты теней должен происходить с билинейной фильтрацией. Аппаратная фильтрация формата A32B32G32R32F поддерживается далеко не всей линейкой shader model 3.0 capable видеокарт, поэтому она реализуется программно, в шейдере (хотя на моей видеокарте она поддерживается, но это не учли).

Рендеринг теней происходит с ортографической проекцией, если тень от направленного (directional) источника (солнце), либо с перспективной для конусовидных (omni). Техники перспективного искажения карты теней (например, Perspective Shadow Maps,Trapezoidal Shadow Maps и др.) для положения камеры используемой в игре (направление взгляда сверху вниз, под небольшим углом к направлению главного источнику освещения) не нужны и не используются. Каскадное разделение теней на сектора (Cascaded Shadow Maps, Parallel Split Shadow Maps) не реализованы по тем же причинам.
Карта тени в разрешении 512х512 со сглаживанием и без:

Шейдер для патча террейна в варианте со сглаживанием состоит из 12 текстурных и 59 арифметических инструкций. Без сглаживания 10 и 29 соответственно. Разница в арифметических инструкциях есть реализация билинейной фильтрации и VSM.

Динамическое освещение

Удивительно, но все динамическое освещение повертексное. Как в старые добрые времена. Никаких карт нормалей в игре нет. Смелое решение, но учитывая финальный результат, очевидно, что он себя оправдал на 100%. Недостатка в детализации геометрии совершенно не ощущается. В вертексном шейдере реализованы один точечный источник света с квадратичной аттенюацией (как в классических FFP формулах), один цилиндрический источник (он используется как подсветка персонажа, для освещения близкого окружения героя) и до 16 точечных источников с простейшей линейной аттенюацией по расстоянию.

В игре реализованы также объемные источники освещения. Сделаны они следующим образом. Рисуем сферу, или другую выпуклую фигуру, в месте источника освещения. В вершинном шейдере высчитываем альфу вертексов на основе нормали и вектора направления камеры. Чем больше угол между ними, тем большая прозрачность должна быть. Получаем полупрозрачную сферу с увеличением прозрачности от центра к краям. Так как эта сфера будет пересекать геометрию уровня, мы получим визуальный артефакт изображения в месте пересечения объектов уровня и самой сферы. Данный недостаток исправляется абсолютно таким же методом, как и делаются так называемые soft particles. Берется выборка из буфера глубины и сравнивается с глубиной отрисовывамого пикселя. Если значения близки, то модифицируя альфу (уменьшая ее до нуля), мы делаем место пересечения геометрий невидимым.