Частотное и временное разделение сигналов
При частотном разделении каналов (ЧРК) каждое из подлежащих передаче сообщений
занимает полосу частот стандартного канала ТЧ. В процессе формирования группового сигнала каждому канальному сигналу
отводится неперекрывающаяся со спектрами других сигналов полоса частот
. Тогда общая полоса частот N-канальной группы будет равна
. Считая, что применяется однополосная модуляция и каждый канальный сигнал занимает полосу частот
, для спектра группового сигнала получим
.
Групповой сигнал
преобразуется в линейный сигнал sл(t) и передается по линии связи (тракту передачи). На приемной стороне после преобразования линейного сигнала в групповой, последний с помощью полосовых канальных фильтров ФК (см. рис. 11.1) с полосой пропускания
и демодуляторов ДК преобразуется в канальное сообщение
, которое направляется получателям сообщений.
На вход приемного устройства i–го канала одновременно действуют сигналы всех N каналов. Чтобы без взаимных помех разделить сигналы, каждый из фильтров Фi должен пропускать без ослабления только те частоты, которые принадлежат данному i–му каналу; частоты сигналов всех других каналов фильтр Фi должен подавлять. За счет неидеальности характеристик полосовых канальных фильтров возникают взаимные переходные помехи между каналами. Для снижения этих помех до допустимого уровня необходимо вводить защитные частотные интервалы между каналами
. В современных системах многоканальной телефонной связи каждому каналу выделяется полоса частот 4 кГц, хотя частотный спектр передаваемых речевых сигналов ограничивается полосой 300…3400 Гц, т. е. ширина спектра сигнала составляет 3,1 кГц. Таким образом, в данном случае
= 0,9 кГц. Это означает, что в многоканальных системах с ЧРК эффективно используется примерно 80% полосы пропускания тракта передачи. Кроме того, необходимо обеспечить очень высокую степень линейности всего группового тракта.
При временном разделении каналов (ВРК) групповой тракт с помощью синхронных коммутаторов передатчика и приемника поочередно предоставляется для передачи сигналов каждого канала многоканальной системы. Структурная схема многоканальной системы передачи с ВРК приведена на рис.11.2.
В качестве канальных сигналов в системах с ВРК используются неперекрывающиеся во времени последовательности модулированных импульсов (например, по амплитуде). Совокупность канальных сигналов образует групповой сигнал.
При временном разделении также возможны переходные помехи между каналами, которые в основном обусловлены двумя причинами. Первой причиной является неидеальность АЧХ и ФЧХ тракта передачи, а второй – неидеальность синхронизации коммутаторов на передающей и приемной стороне. Для снижения уровня взаимных помех при ВРК также приходится вводить защитные временные интервалы. Это требует уменьшения длительности импульса каждого канала и, как следствие, расширения спектра сигналов. Так, в многоканальных системах телефонной связи полоса эффективно используемых частот FВ=3100 Гц. В соответствии с теоремой отсчетов Котельникова минимальное значение частоты дискретизации fД = 2fВ = 6200 Гц. Однако в реальных системах выбирают fД =8 кГц (с запасом).
Теоретически ВРК и ЧРК эквивалентны по эффективности использования частотного спектра, однако в реальных условиях системы с ВРК несколько уступают системам с ЧРК по этому показателю из-за трудностей снижения уровня взаимных помех при разделении сигналов. Однако системы с ВРК имеют неоспоримое преимущество, связанное с тем, что благодаря разновременности передачи сигналов различных каналов в них отсутствуют переходные помехи нелинейного происхождения. В системах ВРК ниже пик-фактор. Кроме того, аппаратура ВРК значительно проще аппаратуры ЧРК. Наиболее широкое применение ВРК находит в цифровых системах передачи с ИКМ.
Частным случаем временного разделения является разделение сигналов по фазе, при котором можно обеспечить лишь двухканальную передачу [1].
В общем случае сигналы, занимающие общую полосу частот и передаваемые одновременно, могут быть разделены, если выполняется условие их линейной независимости или условие ортогональности [1].
Этим требованиям удовлетворяют сигналы, различающиеся по форме. В цифровых многоканальных системах с разделением по форме используют ортогональные последовательности в виде функций Уолша. Обобщением разделения по форме, являются асинхронно-адресные системы связи (ААСС). В таких системах легко реализуются резервы пропускной способности, возникающие за счет «мало активных» абонентов. Так, например, можно организовать 1000-канальную систему связи, в которой одновременно ведут передачу любые 50-100 абонентов из тысячи [3].
При комбинированном методе разделениягрупповой сигнал представляет собой отображение определенных комбинаций дискретных канальных сообщений посредством чисел, соответствующих номеру комбинации. Эти числа могут передаваться с помощью сигналов дискретной модуляции любого вида. Например, для двоичных кодов (m=2) и числе каналов N=2 групповое сообщение может принимать
возможных значения, соответствующих различным комбинациям нулей и единиц:00, 01, 10, 11. Для N-канальных систем потребуется
различных значений модулируемого параметра (частоты, фазы). В общем случае можно модулировать одновременно несколько параметров переносчика, например, амплитуду и фазу, частоту и фазу и т. д. Структурная схема многоканальной системы с комбинационным (кодовым) разделением (уплотнением) представлена на рис.11.3.


Рис.11.3. Структурная схема многоканальной системы с комбинационным уплотнением
В последнее время большой интерес проявляется к системам амплитудно-фазовой модуляции (АФМ), которые можно реализовать схемой квадратурной модуляции. В системах АФМ в течение интервала передачи одного элементарного сигнала его фаза и амплитуда принимают значения, выбранные из ряда возможных дискретных значений амплитуд и фаз. Каждая комбинация значений амплитуды и фазы отображает один из многопозиционных сигналов группового сигнала с основанием кода
. Сигналы АФМ можно формировать также путем многоуровневой амплитудной и фазовой модуляции двух квадратурных (сдвинутых по фазе на
) колебаний несущей частоты [1].
В последние годы успешно развивается также теория сигнально-кодовых конструкций(СКК), направленная на повышение скорости передачи и помехоустойчивости при существенных ограничениях на энергетику и занимаемую полосу частот. Вопросы теории СКК рассмотрены в главе 11 [1].