Электронные оболочки атомов. Теория Бора

 

По теории Резерфорда, каждый электрон вращается вокруг ядра, причем сила притяжения ядра уравновешивается центробежной силой, возникающей при вращении электрона. Вращение электрона совершенно аналогично его быстрым колебаниям и должно вызвать испускание электромагнитных волн. Поэтому можно предположить, что вращающийся электрон излучает свет определенной длины волны, зависящий от частоты обращения электрона по орбите. Но, излучая свет, электрон теряет часть своей энергии, вследствие чего нарушается равновесие между ним и ядром. Для восстановления равновесия электрон должен постепенно передвигаться ближе к ядру, причем так же постепенно будет изменяться частота обращения электрона и характер испускаемого им света. В конце концов, исчерпав всю энергию, электрон должен "упасть" на ядро, и излучение света прекратится.

Если бы на самом деле происходило подобное непрерывное изменение движения электрона, его "падение" на ядро означало бы разрушение атома и прекращения его существования.

Таким образом, наглядная и простая ядерная модель атома, предложенная Резерфордом, явно противоречила классической электродинамике. Система вращающихся вокруг ядра электронов не может быть устойчивой, так как электрон при таком вращении должен непрерывно излучать энергию, что, в свою очередь, должно привести к его падению на ядро и к разрушению атома. Между тем атомы являются устойчивыми системами.

Эти существенные противоречия частично разрешил выдающийся датский физик Нильс Бор (1885 - 1962), разработавший в 1913 году теорию водородного атома, в основу которой он положил особые постулаты, связав их, с одной стороны, с законами классической механики и, с другой стороны, с квантовой теорией излучения энергии немецкого физика Макса Планка (1858 - 1947). Сущность теории квантов сводится к тому, что энергия испускается и поглощается не непрерывно, как принималось раньше, а отдельными малыми, но вполне определенными порциями - квантамиэнергии. Запас энергии излучающего тела изменяется скачками, квант за квантом; дробное число квантов тело не может ни испускать, ни поглощать. Величина кванта энергии зависит от частоты излучения: чем больше частота излучения, тем больше величина кванта.

Кванты лучистой энергии называются также фотонами. Применив квантовые представления к вращению электронов вокруг ядра, Бор положил в основу своей теории очень смелые предположения, или постулаты. Хотя эти постулаты и противоречат законам классической электродинамики, но они находят свое оправдание в тех поразительных результатах, к которым приводят, и в том полнейшем согласии, которое обнаруживается между теоретическим результатами и огромным числом экспериментальных фактов. Постулаты Бора заключаются в следующем: электрон может двигаться вокруг не по любым орбитам, а только по таким, которые удовлетворяют определенными условиям, вытекающим из теории квантов. Эти орбиты получили название устойчивых, стационарных или квантовых орбит. Когда электрон движется по одной из возможных для него устойчивых орбит, то он не излучает электромагнитной энергии. Переход электрона с удаленной орбиты на более близкую сопровождается потерей энергии. Потерянная атомом при каждом переходе энергия превращается в один квант лучистой энергии. Частота излучаемого при этом света определяется радиусами тех двух орбит, между которыми совершается переход электрона. Обозначив запас энергии атома при положении электрона на более удаленной от ядра орбите через Еí, а на более близкой через Еê и разделив потерянную атомом энергию Еí - Еê на постоянную Планка, получим искомую частоту:

= (Еí - Еê ) / h

Чем больше расстояние от орбиты, на которой находится электрон, до той, на которую он переходит, тем больше частота излучения. Простейшим из атомов является атом водорода, вокруг ядра которого вращается только один электрон.

Исходя из приведенных постулатов, Бор рассчитал радиусы возможных орбит для этого электрона и нашел, что они относятся, как квадраты натуральных чисел: 1: 2 : 3 : ...: n . Величина n получила название главного квантового числа.

В дальнейшем теория Бора была распространена и на атомную структуру других элементов, хотя это было связано с некоторыми трудностями из-за ее новизны. Она позволила разрешить очень важный вопрос о расположении электронов в атомах различных элементов и установить зависимость свойств элементов от строения электронных оболочек их атомов. В настоящее время разработаны схемы строения атомов всех химических элементов. Однако надо иметь в виду, что все эти схемы - это лишь более или менее достоверная гипотеза, позволяющая объяснить многие физические и химические свойства элементов.

Как было уже сказано раньше, число электронов, вращающихся вокруг ядра атома, соответствует порядковому номеру элемента в периодической системе. Электроны расположены по слоям, т.е. каждому слою принадлежит определенное заполняющее или как бы насыщающее его число электронов. Электроны одного и того же слоя характеризуются почти одинаковым запасом энергии, т.е. находятся примерно на одинаковом энергетическом уровне. Вся оболочка атома распадается на несколько энергетических уровней. Электроны каждого следующего слоя находятся на более высоком энергетическом уровне, чем электроны предыдущего слоя. Наибольшее число электронов N, имеющих возможность находиться на данном энергетическом уровне, равно удвоенному квадрату номера слоя:

N=2n

где n - номер слоя. Таким образом на 1-2, на 2-8, на 3-18 и т.д. Кроме того, установлено, что число электронов в наружном слое для всех элементов, кроме палладия, не превышает восьми, а в предпоследнем - восемнадцати. Электроны наружного слоя, как наиболее удаленные от ядра и, следовательно, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних. Атомы, лишившиеся одного или нескольких электронов, становятся положительно заряженными, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот, атомы, присоединившие электроны становятся отрицательно заряженными. Образующиеся таким путем заряженные частицы, качественно отличные от соответствующих атомов, называются ионами. Многие ионы в свою очередь могут терять или присоединять электроны, превращаясь при этом или в электронейтральные атомы, или в новые ионы с другим зарядом.