Разрешающая способность спектральной решетки. угловая и линейная дисперсия.

Дифракция света имеет существенное значение в приборах для исследования электромагнитных излучений атомов и молекул – спектрографах и спектрометрах. Спектральный прибор представляет любое излучение в виде совокупности монохроматических волн. Любая точка предмета вследствие дифракции отображает­ся в виде центрального светлого пятна, окруженного чередующимися темными и светлыми кольцами; радиус пятна зависит от относительных размеров линз оптической системы.

В ряде спектральных приборов используется дисперсия показателя преломления призм (лекция 1), приводящая к пространственному разделению монохроматических компонент излучения: , где угол падения для излучения с длиной волны , угол падения анализируемого света.

Критерий Рэлея - два близлежащих одинаковых точеч­ных источника или две близлежащие спектральные линии с равными интенсивностями условно считаются полностью разрешенными (наблюдаемыми порознь), если максимум интенсивности одного источ­ника (линии) совпадает с первым миниму­мом интенсивности другого (рис. а).

 

При выполнении критерия Рэлея интенсивность «провала» между максимумами составляет 80% интенсив­ности в максимуме, что является достаточ­ным для разрешения линий и . Если критерий Рэлея нарушен, то наблюдается одна линия (рис.b).

 

1. Разрешающая способность объекти­ва. Если на объектив падает свет от двух удаленных точечных источников S1и S2 (например, звезд) с некоторым угловым расстоянием , то вследствие дифракции световых волн на краях диафрагмы, огра­ничивающей объектив, в его фокальной плоскости вместо двух точек наблюдаются максимумы, окруженные чередующимися темными и светлыми кольцами. Две близлежащие звезды, наблюдаемые в объективе в моно­хроматическом свете, разрешимы, если уг­ловое расстояние между ними

, (16.1)

где — длина волны света, D — диаметр объектива.

Опр.16.1. Разрешающей способностью (разре­шающей силой) объектива называется ве­личина (16.2)

где — наименьшее угловое расстоя­ние между двумя точками, при котором они еще разрешаются оптическим прибором. При выполнении критерия Рэлея, угловое расстояние между точками должно быть равно :

(16.3)

Следовательно, разрешающая способ­ность объектива (16.4)

Т.е. для увеличения разрешающей способности оп­тических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны. Для наблюдения более мелких деталей предмета употребляют ультрафиолетовое излучение, а получен­ное изображение в данном случае наблю­дается с помощью флуоресцирующего эк­рана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рент­геновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломля­ясь; - не­возможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излуче­ние. Поэтому электронный микроскоп име­ет очень высокую разрешающую способ­ность.

 

Опр.16.2. Разрешающей способностью спек­трального прибора называют безразмер­ную величину (16.5)

где — абсолютное значение минималь­ной разности длин волн двух соседних спектральных линий, при которой эти ли­нии регистрируются раздельно.

 

Установление длин волн исследуемого излучения в спектральных приборах чаще всего производится путем сравнения длин волн двух близких спектральных линий (одна из которых принадлежит эталонному веществу или излучению). Положение спектральной линии задается углом, определяющим направление лучей.

Опр.16.3. Угловой дисперсией спектрального прибора называется величина (16.6) , где —угловое расстоя­ние между двумя линиями (разница в углах на выходе из призмы или решетки для двух лучей с длинами волн и )

Опр.16.4. Линейной дисперсией спектрального прибора называется величина (16.7) , где —линейное расстоя­ние между линиями, различающимися по длинам волн на .

 

2. Разрешающая способность дифрак­ционной решетки. В спектральных приборах с дифракционными решетками положение спектральных линий на плоскости наблюдения дается условием максимумов. Пусть максимум т-го порядка для длины волны наблюдается под углом , т.е., согласно (14.6), . При переходе от максимума к соседнему минимуму разность хода ме­няется на ( 14.7), где ­число щелей решетки. Следовательно, ми­нимум , наблюдаемый под углом , удовлетворяет условию . По критерию Рэлея, , т.е., или . Так как и близки между собой, т.е. , то,

(16.8)

Таким образом, разрешающая способ­ность дифракционной решетки пропорцио­нальна порядку т спектров и числу N ще­лей, т. е. при заданном числе щелей увели­чивается при переходе к спектрам высших порядков. Современные дифракционные решетки обладают довольно высокой раз­решающей способностью (до 2∙105).

Угловая дисперсия дифрак­ционной решетки: ,где положение m-го максимума.

 

 

Угловая дисперсия дифракционной решетки:

,

где δ. - угловое расстояние между двумя спектральными

линиями с разностью длин волн δλ, - угол дифракции, k=1,2,3...

Линейная дисперсия дифракционной решетки:

- где δl - линейное расстояние между двумя спектральными

линиями с разностью длин волн δλ.

- где δl - линейное расстояние между двумя спектральными

линиями с разностью длин волн δλ.

Из рисунка видно, что при небольших имеем

фокусное расстояние линзы,

собирающей дифрагирующие лучи на экране. Следовательно,

линейная дисперсия может быть выражена через угловую

дисперсию D:

Для дифракционной решетки (при небольших ):

40.дисперсия света .нормальная и аномальная дисперсия вещества.

Диспе́рсия све́та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Итак, дисперсия света – это зависимость показателя преломления вещества от частоты световой волны . Эта зависимость не линейная и не монотонная. Области значения ν, в которых

  (или ) (10.2.1)  

соответствуют нормальной дисперсии света(с ростом частоты ν показатель преломления n увеличивается). Нормальная дисперсия наблюдается у веществ, прозрачных для света. Например, обычное стекло прозрачно для видимого света, и в этой области частот наблюдается нормальная дисперсия света в стекле. На основе явления нормальной дисперсии основано «разложение» света стеклянной призмой монохроматоров.

Дисперсия называется аномальной, если

  (или ), (10.2.2)  

т.е. с ростом частоты ν показатель преломления n уменьшается. Аномальная дисперсия наблюдается в областях частот, соответствующих полосам интенсивного поглощения света в данной среде. Например, у обычного стекла в инфракрасной и ультрафиолетовой частях спектра наблюдается аномальная дисперсия.

Зависимости n от ν и λ показаны на рис. 10.4 и 10.5.

Рис. 10.4. Рис. 10.5

В зависимости от характера дисперсии групповая скорость u в веществе может быть как больше, так и меньше фазовой скорости υ (в недиспергирующей среде ).

Групповая скорость u связана с циклической частотой ω и волновым числом k соотношением: , где , . Тогда

. Отсюда можно записать:

  . (10.2.3)  

Таким образом, при нормальной дисперсии u < υ и .

При аномальной дисперсии u > υ, и, в частности, если , то u > c. Этот результат не противоречит специальной теории относительности. Понятие групповой скорости правильно описывает распространение только такого сигнала (волнового пакета), форма которого не изменяется при перемещении сигнала в среде. (Строго говоря, это условие выполняется только для вакуума, т.е. в недиспергирующей среде). В области частот, соответствующих аномальной дисперсии, групповая скорость не совпадает со скоростью сигнала, так как вследствие значительной дисперсии форма сигнала так быстро изменяется, что не имеет смысла говорить о групповой скорости.