Существует три основных способа определения движения точки: естественный, координатный и векторный.
При естественном способе заранее известна траектория точки; на ней следует выбрать начало (о) отсчета (например, контрольный пункт на трассе дистанции). Тогда положение точки (например, гонщика) на траектории определяется расстоянием ее от начала отсчета (естественная координата). Надо еще указать, с какой стороны от начала отсчета (знаком + или —) расположена на траектории точка (рис. 17, а). Положение точки на линии определяется всего одним числом со знаком + или —.
Координатный способ позволяет определить положение точки в координатах на плоскости и в пространстве. Чаще применяют прямоугольные координаты.
Рис. 17, Способы отсчета движения точки:
а — естественный способ; бвгде — координатный способ: и — на плоскости, в — в пространстве, г — полярные, д — цилиндрические, е — сферические; ж — векторный способ (ориг.)
Расстояние от начала координат до проекции точки на все три оси (Мх, Му, А1,)— это три линейные координаты: абсцисса, ордината и аппликата , полностью определяющие положение точки в пространстве. Можно пользоваться также и угловыми координатами: на плоскости — в системе полярных координат (см. рис. 17, г), а в пространстве — в системах цилиндрических (см. рис. 17, д) и сферических координат (см. рис. 17, е).
Векторный способ сводится к установлению расстояния точки от начала отсчета, а также направления радиуса-вектора (рис. 17, ж)1.