Искусственная оптическая анизотропия.

Существуют различ­ные способы получения искусственной оп­тической анизотропии, т. е. сообщения оп­тической анизотропии естественно изо­тропным веществам. Оптически изотропные вещества ста­новятся оптически анизотропными под действием:

1) одностороннего сжатия или растяжения (кристаллы кубической систе­мы, стекла и др.) –стеклянная пластинка приобретает свойства одноосного кристалла, оптическая ось которого совпадает с направлением сжатия или растяжения;

2) электрического поля (эффект Керра; жидкости, аморфные те­ла, газы) – жидкий или твердый изотропный диэлектрик, помещенный в достаточно сильное электрическое поле, становится оптически анизотропным;

3) магнитного поля (эффект Коттона – Мутона; жидкости, стекла, коллоиды) - оптической осью явл. направление магнитного поля. Закономерности эффектов 2) и 3) во многом сходны. Эффект Керра: оптическая анизот­ропия веществ под действием электриче­ского поля — объясняется различной поляризуемостью молекул жидкости по раз­ным направлениям. Это явление практиче­ски безынерционно, т. е. переход вещества из изотропного состояния в анизотропное при включении поля (и обратно) составляет приблизительно 10 –10 с. Применение: ячейка Керра служит идеальным световым затвором и применяется в быстропротекающих процессах (звукозапись, воспроизводство звука, скоростная фото- и киносъемка, изучение скорости распространения света и т.д.), в оптической локации, в оптической телефонии и т. д.

 

27. Вращение плоскости поляризации.

Вращение плоскости поляризации поперечной волны — физическое явление, заключающееся в повороте поляризационного вектора линейно-поляризованной поперечной волны вокруг её волнового вектора при прохождении волны через анизотропную среду. Волна может быть электромагнитной, акустической, гравитационной и т. д.

Линейно-поляризованная поперечная волна может быть описана как суперпозиция двух циркулярно поляризованных волн с одинаковым волновым вектором и амплитудой. В изотропной среде проекции полевого вектора этих двух волн на плоскость поляризации колеблются синфазно, их сумма равна полевому вектору суммарной линейно-поляризованной волны. Если фазовая скорость циркулярно поляризованных волн в среде различна (циркулярная анизотропия среды, см. также Двойное лучепреломление), то одна из волн отстаёт от другой, что приводит к появлению разности фаз между колебаниями указанных проекций на выбранную плоскость. Эта разность фаз изменяется при распространении волны (в однородной среде — линейно растёт). Если повернуть плоскость поляризации вокруг волнового вектора на угол, равный половине разности фаз, то колебания проекций полевых векторов на неё будут вновь синфазны — повёрнутая плоскость будет плоскостью поляризации в данный момент. Таким образом, непосредственной причиной поворота плоскости поляризации является набег разности фаз между циркулярно поляризованными составляющими линейно-поляризованной волны при её распространении в циркулярно-анизотропной среде. Для электромагнитных колебаний такая среда называется оптически активной , для упругих поперечных волн — акустически активной. Известен также поворот плоскости поляризации приотражении от анизотропной среды (см., например, магнитооптический эффект Керра).