Ионизирующее излучение: виды характеристики, биологическое действие, нормирование, измерение, защита. Различия ионизирующего и неионизирующего излучений.

Ионизирующими излучениями называются такие виды лучистой энергии, которые, попадая в определенные среды или проникая через них, производят в них ионизацию. Такими свойствами обладают радиоактивные излучения, излучения высоких энергий, рентгеновские лучи и др.

Широкое использование атомной энергии в мирных целях, разнообразных ускорительных установок и рентгеновских аппаратов различного назначения обусловило распространенность ионизирующих излучений в народном хозяйстве и огромные, все возрастающие контингенты лиц, работающих в этой области.

Наиболее разнообразны по видам ионизирующих излучений так называемые радиоактивные излучения, образующиеся в результате самопроизвольного радиоактивного распада атомных ядер элементов с изменением физических и химических свойств последних. Элементы, обладающие способностью радиоактивного распада, называются радиоактивными; они могут быть естественными, такие, как уран, радий, торий и др. (всего около 50 элементов), и искусственными, для которых радиоактивные свойства получены искусственным путем (более 700 элементов).

При радиоактивном распаде имеют место три основных вида ионизирующих излучений: альфа , бета и гамма.

Альфа-частица — это положительно заряженные ионы гелия, образующиеся при распаде ядер, как правило, тяжелых естественных элементов (радия, тория и др.). Эти лучи не проникают глубоко в твердые или жидкие среды, поэтому для защиты от внешнего воздействия достаточно защититься любым тонким слоем, даже листком бумаги.

Бета-излучение представляет собой поток электронов, образующихся при распаде ядер как естественных, так и искусственных радиоактивных элементов. Бета-излучения обладают большей проникающей способностью по сравнению с альфа-лучами, поэтому и для защиты от них требуются более плотные и толстые экраны. Разновидностью бета-излучений, образующихся при распаде некоторых искусственных радиоактивных элементов, являются. позитроны. Они отличаются от электронов лишь положительным зарядом, поэтому при воздействии на поток лучей магнитным полем они отклоняются в противоположную сторону.

Гамма-излучение, или кванты энергии (фотоны), представляют собой жесткие электромагнитные колебания, образующиеся при распаде ядер многих радиоактивных элементов. Эти лучи обладают гораздо большей проникающей способностью. Поэтому для экранирования от них необходимы специальные устройства из материалов, способных хорошо задерживать эги лучи (свинец, бетон, вода). Ионизирующий эффект действия гамма-излучения обусловлен в основном как непосредственным расходованием собственной энергии, так и ионизирующим действием электронов, выбиваемых из облучаемого вещества.

Рентгеновское излучение образуется при работе рентгеновских трубок, а также сложных электронных установок (бетатронов и т. п.). По характеру рентгеновские лучи во многом сходны с гамма-лучами и отличаются от них происхождением и иногда длиной волны: рентгеновские лучи, как правило, имеют большую длину волны и более низкие частоты, чем гамма-лучи. Ионизация вследствие воздействия рентгеновских лучей происходит в большей степени за счет выбиваемых ими электронов и лишь незначительно за счет непосредственной траты собственной энергии. Эти лучи (особенно жесткие) также обладают значительной проникающей способностью.

Нейтронное излучение представляет собой поток нейтральных, то есть незаряженных частиц нейтронов (n) являющихся составной частью всех ядер, за исключением атома водорода. Они не обладают зарядами, поэтому сами не оказывают ионизирующего действия, однако весьма значительный ионизирующий эффект происходят за счет взаимодействия нейтронов с ядрами облучаемых веществ. Облучаемые нейтронами вещества могут приобретать радиоактивные свойства, то есть получать так — называемую наведенную радиоактивность. Нейтронное излучение образуется при работе ускорителей элементарных частиц, ядерных реакторов и т. д. Нейтронное излучение обладает наибольшей проникающей способностью. Задерживаются нейтроны веществами, содержащими в своей молекуле водород (вода, парафин и др.).

Все виды ионизирующих излучений отличаются друг от друга различными зарядами, массой и энергией. Различия имеются и внутри каждого вида ионизирующих излучений, обусловливая большую или меньшую проникающую и ионизирующую способность и другие их особенности. Интенсивность всех видов радиоактивного облучения, как и при других видах лучистой энергии, обратно пропорциональна квадрату расстояния от источника излучения, то есть при увеличении расстояния вдвое или втрое интенсивность облучения уменьшается соответственно в 4 и 9 раз.

Радиоактивные элементы могут присутствовать в виде твердых тел, жидкостей и газов, поэтому, помимо своего специфического свойства излучения, они обладают соответствующими свойствами этих трех состояний; они могут образовывать аэрозоли, пары, распространяться в воздушной среде, загрязнять окружающие поверхности, включая оборудование, спецодежду, кожный покров рабочих и т. д., проникать в пищеварительный тракт и органы дыхания.

В организме радиоактивные вещества, как и все остальные продукты, разносятся кровотоком по всем органам и системам, после чего частично выводятся из организма через выделительные системы (желудочно-кишечный тракт, почки, потовые и молочные железы и др.), а некоторая их часть отлагается в определенных органах и системах, оказывая на них преимущественное, более выраженное действие. Некоторые же радиоактивные ве- щества (например, натрий — Na24) распределяются по всему организму относительно равномерно. Преимущественное отложение различных веществ в тех или иных органах и системах определяется их физико-химическими свойствами и функциями этих органов и систем.

Комплекс стойких изменений в организме под воздействием ионизирующих излучений называется лучевой болезнью. Лучевая болезнь может развиться как вследствие хронического воздействия ионизирующих излучений, так и при кратковременном облучении значительными дозами. Она характеризуется главным образом изменениями со стороны центральной нервной системы (подавленное состояние, головокружение, тошнота, общая слабость и др.), крови и кроветворных органов, кровеносных сосудов (кровоподтеки вследствие ломкости сосудов), желез внутренней секреции.

В результате длительных воздействий значительных доз ионизирующего излучения могут развиваться злокачественные новообразования различных органов и тканей, которые: являются отдаленными последствиями этого воздействия. К числу последних можно отнести также понижение сопротивляемости организма различным инфекционным и другим заболеваниям, неблагоприятное влияние на детородную функцию и др.

Предельно допустимая доза ПДД — годовой уровень облучения персонала, не вызывающий при равномерном накоплении дозы в течение 50 лет обнаруживаемых современными методами неблагоприятных изменений в состоянии здоровья самого облучаемого и его потомства.

Исходя из возможных последствий влияния ионизирующих излучений на организм устанавливаются следующие категории облучаемых лиц: категория А — персонал; категория Б — отдельные лица из населения; категория В — население в целом (при оценке генетически значимой дозы облучения).

Предельно допустимые дозы ПДД внешнего и внутреннего облучения (табл. 12) устанавливаются для четырех групп критических органов или тканей: I — все тело, гонады, красный костный мозг; II — мышцы, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталик глаза и другие органы, за исключением тех, которые относятся к группам I, III, IV; III — костная ткань, щитовидная железа и кожный покров (кроме кожи кистей, предплечий, лодыжек и стоп); IV — кисти, предплечия, лодыжки и стопы.

Среднегодовая допустимая концентрация радиоактивных веществ в организме, воде и воздухе (СДК) — это предельно допустимое количество (активность) радиоактивного изотопа в единице объема или массы, поступление которого в организм естественными путями (с суточным потреблением воды или воздуха) не создает в критических органах и в организме в целом доз облучения, превышающих предельно допустимые.

При постоянной концентрации радиоактивного изотопа в воздухе между ПДП и СДК для лиц категории А существует следующая зависимость:

ПДП (мкКи/год) = 106 СДК (Ки/л) • Q (л/год),

где для воздуха Q = 2,5*106 л/год.

Неионизирующее излучение объединяет все излучения и поля электромагнитного спектра, у которых не хватает энергии для ионизации материи. Строгое научное определение неионизирующих излучений определяет их как излучения с длиной волны более 1000 нм и энергией меньше 10 кэВ, заведомо недостаточной, чтобы ионизировать вещество. Заметим, что с этих позиций ультрафиолетовое излучение не всегда является «неионизирующим», поскольку в отдельных случаях оно может ионизировать вещество.

Основное отличие этих групп заключается в том, что неионизирующие излучения, в отличие от ионизирующих, при взаимодействии со средой не вызы­вают ионизации атомов, т. е. их распада на противоположно заряженные части­цы - ионы.

К неионизирующим излучениям принадлежит тепловое (инфракрас­ное) излучение и резонансное, возникающее в объекте (тело человека), поме­щенном в стабильное магнитное поле, под действием высокочастотных электро­магнитных импульсов. Кроме того, к неионизирующим излучениям условно относят ультразвуковые волны, представляющие собой упругие колебания среды.

43. Электромагнитные поля и излучения: источники, классификация, воздействия на организм человека, нормирование, методы и средства защиты.

Влияние физических, особенно электромагнитных, полей на биосферу разнообразно и многогранно. В результате антропогенной деятельности увеличивается общий электромагнитный фон окружающей природной среды не только в количественном, но и в качественном отношении.

В отличие от механических колебаний электромагнитные волны могут распространяться и в вакууме, т.е. в пространстве, не содержащем атомов, но они ведут себя подобно механическим волнам, в частности, имеют конечную скорость и переносят энергию. Наибольшая скорость электромагнитных волн характерна для вакуума (скорость света 300 тыс. км/с). Энергия электромагнитного поля (ЭМП) пропорциональна четвертой степени частоты его колебаний.

Защита от электромагнитных полей

Нормативы воздействия ЭМП. Электромагнитное поле, как особая форма существования материи, характеризуется целым рядом параметров - частотой, напряженностью электрического и магнитного полей, фазой, поляризацией, видом модуляции, структурой и т. д. Биологическая активность почти всех перечисленных параметров уже доказана и степень их воздействия учтена в установленных предельно допустимых уровнях.

Длина электромагнитных волн от 107 км до 10-11 см. В зависимости от их длин и частот принято выделять ионизирующие излучения (гамма- и рентгеновские), излучения оптического диапазона (ультрафиолетовое, видимый свет, инфракрасное), радио- и низкочастотный диапазон.

Принято нормировать электромагнитные поля отдельно для производственного персонала и населения, т.е. людей профессионально связанных и несвязанных с производством и работой в электромагнитных полях. При этом учитывается, что облучение населения может производиться круглосуточно, а производственный персонал попадает в поле действия электромагнитных полей только на производстве. В связи с этим предельно допустимые уровни для производственного персонала в 2...3 раза выше, чем для населения.

Предельно допустимые уровни электромагнитных полей на производстве не должны превышать на рабочих местах производственного персонала, а для населения - на селитебной территории, под которой понимается территория населенного пункта, отведенная под жилые кварталы, общественные здания, парки, бульвары и т.п. Обобщенные санитарно-гигиенические нормативы воздействия электромагнитных полей приведены в табл. 20.1.

Таблица 20.1. Санитарно-гигиенические нормативы воздействия электромагнитных полей

Диапазон, области применения Нормируемые пара­метры Допустимые значения
Постоянное магнитное поле, условия труда В, мкТл ПДУ - 10
Электростатическое поле, условия труда E, В/м ПДУ - 60; ДУ = 60/t0,5, где t = 1,2,3,..,9 ч, в остальное вре­мя E ≤ 20
Переменные электромагнит­ные поля 50 Гц, условия труда E, В/м ПДУ - 25 (без средств защи­ты) <5-2 ч 5...10 - 3 ч > 10... 15 - 90 мин 15...20 - 10 мин > 20...25 - 5 мин
20...22 кГц, население E, В/м Eпду = 0,5
0,06...300 МГц, условия труда В, мкТл E, В/м В, мкТл BПДУ = 5 Eпду = 50 (0,06...3 МГц) Eпду = 20 (3...30 МГц) Eпду= 10 (30...50 МГц) Eпду = 5 (50...300 МГц) Bпду = 6,3 (0,06... 1,5 МГц) Впду = 0,38 (30...50 МГц)
0,3...300 ГГц, условия труда ППЭ (предель­ная поглощаемая энергия), Вт/м2 ППЭпду = 10 Дж/м2 (энерге­тическая нагрузка) ППЭпду = 20 (от вращаю­щихся и сканирующих антенн) ППЭпду = 2 (в других случа­ях)

В производственных и бытовых условиях на человека оказывает воздействие широкий спектр электромагнитных полей и излучений (ЭМП и ЭМИ).

В качестве предельно допустимого уровня (ПДУ) облучения населения принимаются такие значения электромагнитных полей, которые при ежедневном облучении в свойственных для данного источника излучения режимах не вызывают у населения без ограничения пола и возраста заболеваний или отклонений в состоянии здоровья.

обнаруживаемых современными методами исследования в период облучения или в отдаленные сроки после его прекращения.

Методы и средства защиты от ЭМП. В связи с загрязнением окружающей среды такими физическими полями, как электромагнитные излучения, необходима и защита от них. Для правильного выбора оптимальных средств защиты от электромагнитных полей необходимо определить основные характеристики источников ЭМП: диапазон частот, энергия и мощность излучения, режим работы, диаграмма направленности, особенности распространения в атмосфере, биологическое действие, тип поляризации, их назначение и т.п.

В зависимости от частоты источника ЭМП, его мощности и режима работы выбирают те или иные средства защиты от воздействия электромагнитных колебаний на человеческий организм.

Мероприятия по защите биологических объектов от ЭМП подразделяют на организационные, инженерно-технические, медицинско-профилактические и лечебные.

Основные организационные мероприятия включают: инормирование параметров электромагнитных воздействий; периодический контроль облучаемости;

рациональное размещение источников и приемников излучения (территориальный разнос);

ограничение времени пребывания в ЭМП; предупредительные надписи и знаки.

Основными инженерно-техническими мероприятиями являются уменьшение мощности излучения непосредственно в источнике и электромагнитное экранирование.

Постоянное и низкочастотное магнитное поле. Защита от воздействия магнитного поля сводится к защите расстоянием и экранированием. При работе с постоянными магнитами, магнитными дефектоскопами, станками с магнитным креплением обрабатываемых деталей защита сводится к выведению работающего из зоны повышенного уровня магнитного поля. Установки намагничивания и размагничивания при внесении в них деталей следует обесточивать.

Электростатические поля. Методы, исключающие или снижающие интенсивность генерации зарядов:

увлажнение воздуха до относительной влажности 65...75%; химическая обработка поверхности электропроводными покрытиями;

нанесение на поверхность антистатических веществ; нейтрализация зарядов с применением индукционных, высоковольтных, высокочастотных, радиоактивных нейтрализаторов.

очистка жидкостей от нерастворимых твердых и жидких примесей;

уменьшение скоростей обработки, транспортирования и слива; Методы, устраняющие образующиеся заряды: заземление электропроводных частей оборудования с сопротивлением заземления не более 100 Ом;

применение средств индивидуальной защиты (электростатические халаты и обувь, антистатические браслеты);

изготовление полов во взрывоопасных помещениях электропроводными с удельным электрическим сопротивлением не более 106 Ом · м.

Для защиты от атмосферного статического электричества, достигающего потенциала в несколько миллионов вольт и силы тока в разряде молнии 10 000 А, применяются одиночные или групповые заземленные молниеотводы.

Бытовые электроприборы и персональные компьютеры. Электромагнитная безопасность электробытовых приборов и компьютеров (ПК) должна быть подтверждена гигиеническим сертификатом. Требования безопасности при работе на персональных электронно-вычислительных машинах сформулированы в СанПиН 2.2.2.542-96 "Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организации работы".

Защита от воздействия ЭМИ РЧ. При размещении радиотехнических сооружений и объектов (РТО) на селитебной территории с целью получения уровней воздействия ЭМП, не превышающих ПДУ, учитывают:

мощность и диапазон частот источника ЭМП; конструктивные особенности, характеристику направленности и высоту размещения антенны излучателя;

оптимальный режим работы источника ЭМП; рельеф местности;

функциональное значение прилегающих территорий; этажность и особенность застройки и т.п.

Для защиты населения от воздействия ЭМ П при сооружении РТО в случае необходимости создают санитарно-защитную зону и зону ограничения застройки.

В санитарно-защитной зоне и зоне ограничений запрещается строительство жилых зданий всех видов, стационарных лечебно-профилактических и санаторно-курортных учреждений, детских дошкольных учреждений, средних учебных заведений всех видов, интернатов всех видов и других зданий, предназначенных для круглосуточного пребывания людей.

Источники ЭМИ РЧ должны размешаться в производственных помещениях с учетом недопустимости повышенного электромагнитного воздействия на соседние рабочие места, помещения, здания и прилегающие территории. Допускается размещать антенны на крышах жилых, общественных и других зданий, если при этом внутри зданий и на прилегающей территории интенсивность ЭМИ РЧ не превышает предельно допустимых значений.

Проводить защиту людей от внутренних источников излучений наиболее целесообразно непосредственно в месте проникновения электромагнитной энергии из экранирующих кожухов, улучшая методы радиогерметизации стыков и сочленений.

При защите помещений от внешних излучений с успехом применяют оклеивание стен специальными металлизированными обоями, засетчивание окон, специальные металлизированные шторы и т.п.

К "активным" методам защиты человека от воздействия электромагнитных полей следует отнести методы измерения энергетических параметров технических средств радиосвязи, радиовещания и телевидения. Применение этих методов включает управление мощностью передатчиков, изменение характеристик направленности антенн на более "экологически чистые". Суть метода заключается в изменении диаграммы направленности антенн в вертикальной плоскости путем изменения расстояния между этажами антенны.

Проектирование любой системы защиты начинается со сравнения допустимого уровня электромагнитного поля, определяемого в соответствии с принятыми нормативами ПДУ, с уровнями, полученными методами прогноза или измерения. В результате такого сравнения получают величину необходимого ослабления уровня электромагнитного поля (электромагнитной энергии).

Наиболее эффективным способом снижения интенсивности ЭМП является экранирование. Этот способ зашиты от электромагнитных излучений заключается в отражении и поглощении электромагнитных волн.

Экранирование источников ЭМИ РЧ или рабочих мест осуществляется при помощи отражающих или поглощающих экранов (стационарных или переносных). Отражающие экраны выполняют из металлических листов, сетки, ткани с микропроводом и др. В поглощающих экранах используют специальные материалы, обеспечивающие поглощение излучения соответствующей длины волны. В зависимости от излучаемой мощности и взаимного расположения источника и рабочих мест конструктивное решение экрана может быть различным (замкнутая камера, щит, чехол, штора и т. д.).

Экраны могут размещаться вблизи источника (кожухи, сетки), на трассе распространения (экранированные помещения, лесонасаждения), вблизи защищаемого человека (средства индивидуальной защиты - очки, фартуки, халаты).

Общее свойство патогенных микробов, классификация и характеристика основных групп патогенных микробов. Рост, размножение и устойчивость микробов к воздействию факторов внешней среды.

Существенно различаясь строением, влиянием на организм, устойчивостью к факторам внешней среды, микробы имеют много общего.

Общие свойства патогенных микробов:

1.Патогенность – способность вызывать инфекционную болезнь различной тяжести.

2.Вирулентность– сумма агрессивных свойств микробов по отношению к организму человека и животного. Мерой ее является количество живых микроорганизмов, способных вызвать смертельное заболевание. Вирулентность – это мера патогенности, она различна у разных микробов.

3.Специфичность – способность микробов данного вида вызывать определенный вид заболевания.

4.Токсичность– способность вырабатывать токсин.

Попадая во внутреннюю среду, микроорганизмы в процессе своего размножения и жизнедеятельности выделяют ядовитые (токсические) отравляющие вещества. Именно они и определяют характер поражения организма и признаки инфекционного заболевания.

Различают экзотоксины и эндотоксины. Экзотоксин выделяется при жизни микробной клетки (бактерий столбняка, дифтерии, ботулизма). Экзотоксины поражают только строго определенные, чувствительные к данному токсину ткани. Так, столбнячный токсин действует на центральную нервную систему, ботулинистический – на ядра черепно-мозговых нервов; дифтерийный – на сердечно-сосудистую систему, почки. Экзотоксины обладают антигенностью. Эндотоксин выделяется при разрушении микробной клетки, вызывает общую интоксикацию и не обладает антигенным свойством.

Таблица 7