Точки разрыва второго рода
Обычно к данной категории хитро относят все остальные случаи разрыва. Всё перечислять не буду, поскольку на практике в 99%-ти процентах задач вам встретится бесконечный разрыв– когда левосторонний или правосторонний, а чаще, оба предела бесконечны.
И, конечно же, самая напрашивающаяся картинка – гипербола в точке ноль. Здесь оба односторонних предела бесконечны: , следовательно, функция терпит разрыв второго рода в точке .
Я стараюсь наполнять свои статьи максимально разнообразным содержанием, поэтому давайте посмотрим на график функции , который ещё не встречался:
Исследуем на непрерывность точку по стандартной схеме:
1) Функция не определена в данной точке, поскольку знаменатель обращается в ноль.
Конечно, можно сразу сделать вывод о том, что функция терпит разрыв в точке , но хорошо бы классифицировать характер разрыва, что часто требуется по условию. Для этого:
2) Вычислим односторонние пределы:
Напоминаю, что под записью понимается бесконечно малое отрицательное число, а под записью – бесконечно малое положительное число.
Односторонние пределы бесконечны, значит, функция терпит разрыв 2-го рода в точке . Ось ординат является вертикальной асимптотой для графика.
Не редка ситуация, когда оба односторонних предела существуют, но бесконечен только один из них, например:
Это график функции .
Исследуем на непрерывность точку :
1) Функция не определена в данной точке.
2) Вычислим односторонние пределы:
О методике вычисления таких односторонних пределов поговорим в двух последних примерах лекции, хотя многие читатели всё уже увидели и догадались.
Левосторонний предел конечен и равен нулю (в саму точку мы «не заходим»), но правосторонний предел бесконечен и оранжевая ветка графика бесконечно близко приближается к своей вертикальной асимптоте, заданной уравнением (чёрный пунктир).
Таким образом, функция терпит разрыв второго рода в точке .
Как и для разрыва 1-го рода, в самой точке разрыва функция может быть определена. Например, для кусочной функции смело ставим чёрную жирную точку в начале координат. Справа же – ветка гиперболы, и правосторонний предел бесконечен. Думаю, почти все представили, как выглядит этот график.
То, чего все с нетерпением ждали: