УРОВНИ ПОСТРОЕНИЯ ДВИЖЕНИЙ

Глава третья.
СУБКОРТИКАЛЬНЫЕ УРОВНИ ПОСТРОЕНИЯ

Рубро-спинальный уровень палеокинетических регуляций А
Обращаемся к поочередной психо-физиологической характеристике наметившихся к настоящему времени уровней построения движений от наинизших до наиболее новых по генезу и сложных по структуре. Ввиду новизны вопроса в последующем изложении невозможно избегнуть ряда не вполне еще ясных, а быть может, и спорных пунктов.
Характеристике самого низшего из уровней, обладающего у человека функциональной самостоятельностью, - рубро-спинального уровня палеокинетических регуляций, необходимо предпослать некоторые данные об особенностях микрофизиологии нервно-мышечного процесса, играющих в этом уровне определяющую роль.
Древнейшими двигательными аппаратами, сохранившимися у человека со времени наиболее примитивных многоклеточных организмов, являются подвижные системы внутренностей, оснащенные гладкой мускулатурой и иннервируемые от вегетативной нервной системы. Вся совокупность нервных и мышечных элементов группы заслуживает названия палеокинетической системы в противоположность неокинетической системе соматического костно-суставно-мышечного аппарата, связанного с сетью периферических миэлинизированных нервных аксонов и с центральной нервной системой.
Движения гладких мышц палеокинетической системы медленны, диффузны; это даже не столько движения, сколько неторопливые смены различных стационарных значений длины мышечных клеток, способной оставаться неопределенно долго на каждом из них. Мышцы палеокинетической системы могут при известных условиях развивать значительные усилия, но лишь медленно, на низкой мощности (например, запирательное усилие раковинных створок у моллюсков).
Мышцы палеокинетической системы склонны к образованию сплошных сетей (синцитиев), нервы - столь же сплошных сплетений с обильными анастомозами (невропилей). В прямой связи с этим палеокинетический нервный процесс очень склонен к иррадиациям. Среди сложных синергии палеокинетического аппарата большое место занимают статокинетические (формоприспособительные) процессы плавных изменений форм и очертаний органа. Правда, этому очень способствуют бесскелетные устройства всей сомы у тех животных, у которых палеосистема является единственной, и внутренних, опять-таки бесскелетных, органов у позвоночных.
Постепенно назревавшая в филогенезе потребность в быстрых и мощных движениях привела на одной из его ступеней к возникновению и строго параллельному развитию: а) жестких костно-суставных кинематических цепей скелета и б) поперечнополосатой мускулатуры с ее нервным оборудованием, вместе образовавших то, что мы обозначаем термином "неокинетическая система". Пассивная часть (а) этой системы является необходимым спутником активной части (б), так как полномерное использование скорости и мощности поперечнополосатой мышцы требует жестких рычажных устройств для передачи больших и быстро изменяющихся усилий, развиваемых такой мышцей, и для сопротивления подчас огромным инерционным силам, возникающим при ее работе1.
Неокинетический процесс как в нервном, так и в поперечнополосатом мышечном элементе имеет характер быстрой и краткой вспышки, длящейся у теплокровных немногие миллисекунды и связанной со столь же быстрым развитием на волокне поверхностной электроотрицательности (spike - спайк). Эта вспышка волны возбуждения вслед за возникновением вспышки возбуждения в точке волокна развертываются две параллельно текущие последовательности следовых процессов, доказанным образом представляющих собой две стороны одного и того же физиологического ряда: 1) смена следовых биоэлектрических потенциалов и 2) ряд сдвигов уровней возбудимости и всех амплитудных и скоростных показателей протекания возбуждения. Вслед за вспышкой возбуждения в период опадания зрачке начинается постепенное восстановление возбудимости (относительная рефрактерность). Спустя несколько миллисекунд от начала вспышки возбуждения (эти длительности сильно колеблются у разных волокон в зависимости от их калибров и связанных с ними общих скоростных характеристик) наступает фаза следового минус-потенциала, во многие десятки раз более низкого по амплитуде по сравнению со спайком. Эта фаза точно совпадает своим началом и концом с супернормальной фазой повышенной возбудимости. По ее миновании параллельно же развиваются в 10-20 раз более длительная и во столько же раз более слабая по амплитуде фаза следового плюс-потенциала и фаза понижения возбудимости - субнормальная. У разных типов волокон как длительности, так и качественные тонкости этой смены фаз несколько вариируют, но во всех случаях сохраняется неукоснительное соответствие между знаком и временными границами фазы по потенциалу и теми же сторонами фазы изменений физиологических характеристик.
Так детально описать весь ход смены явлений, сопровождающих вспышку неокинетического возбуждения, возможно потому, что этот ход абсолютно стандартен для каждого данного неокинетического элемента, почти не вариируя и между разными элементами. Инвентарь явлений и ресурсов неокинетического возбуждения, способного к скоростному фазовому распространению и к вызыванию физического сокращения поперчнополосатой мышцы, полностью исчерпывается отрывистым спайком с его всегда одинаково построенным следовым хвостом.
Вдобавок к этому при данном физиологическом состоянии точки неокинетического элемента никакие изменения качества или силы возбуждающего воздействия не в состоянии ровно ничего изменить ни в количественной, ни тем более в качественной картине описанных явлений. Этот последний факт известен под именем закона "все или ничего". Он означает, что неокинетическая возбудимость обладает альтернативными свойствами: возбуждение либо наступает, либо не наступает, без количественной зависимости от раздражения. Таким образом, этот закон необходимо предполагает наличие острых и четких порогов возбудимости, действительно присущих всем сторонам неокинетического процесса.
В анизотропных дисках поперечнополосатого мышечного волокна вспышке возбуждения сопутствует столь же кратковременный сдвиг всех механических показателей: длины покоя, модуля упругости и коэффициента вязкости, в сторону укорочения первой и увеличения двух последних, после чего все они почти мгновенным скачком возвращаются к своему исходному состоянию. Ни нервный, ни мышечный элемент неокинетической системы ни по биоэлектрическим показателям возбуждения, ни по механическим показателям мышцы не может пробыть в деятельном состоянии дольше примерно десятка своих хронаксий. Таким образом, деятельное состояние неоэлемента есть резко неустойчивое состояние, в то время как покой такого элемента является устойчивым состоянием, способным длиться неопределенно долго. Отметим еще, что деятельное состояние неоэлмента всегда сопровождается электроотрицательной вспышкой, никогда не обнаруживая чего-либо вроде "спайков-позитронов".
Механические явления в поперечнополосатой мышце в результате вспышки возбуждения сложны главным образом вследствие целого ряда привходящих явлений как механического, так и структурного порядка. В момент возбуждения в анизотропных дисках мышечного волокна почти мгновенно возникают огромные сократительные напряжения. Эти напряжения перехватываются растягивающимися за их счет упругими пассивными изотропными дисками, играющими роль буферов-аккумуляторов упругой энергии и значительно более медленно и плавно вновь укорачивающимися, отдавая эту энергию через сухожилия и костные рычаги во внешний мир. Вспышка возбуждения, возникшая на волокне первоначально в области нервно-мышечной пластинки, распространяется тем временем в виде фазовой волны в обе стороны вдоль волокна. Наряду с этой волной вдоль мышечного волокна распространяется еще упругая волна механического напряжения, имеющая скорость примерно того же порядка, но совершенно иной природы. Немгновенность распространения вдоль мышцы обеих этих волн (приводящая, например, к тому, что при физиологической частоте тетануса около 100 Гц на протяжении длинной мышцы, вроде m. sartorius человека, длина как упругой, так и эксцитарной волны укладывается 4 - 5 раз) в сочетании еще с неодновременностью вовлечения в возбудительный процесс всех мионов данной мышцы и с упомянутой выше буферной работой изотропных дисков приводит к большому смягчению и слиянию грубых и молниеносных контрактильных взрывов, превращая их серии в хорошо известную всем плавную и тонко дозированную работу скелетных мышц. Однако наибольшую роль в регуляции однообразных неокинетических вспышек играет другой процесс, который будет освещен несколько ниже.
Палеокинетический процесс в безмякотном нервном волокне и гладкой мышечной клетке почти по всем признакам резко, до полной противоположности, отличается от только что описанного неокинетического стереотипа. Прежде всего нервный процесс в палеокинетической системе не имеет характера стандартной вспышки; он не дает явления спайка с его высоким минус-потенциалом и сопутствующей рефрактерностью. Вместо этого он характеризуется медленными и длительными сдвигами потенциала с самыми разнообразными очертаниями кривых и с возможностью отклонений как в сторону минуса, так и в сторону плюса. Вместо характерной для неокинетического процесса антитезы "возбуждение" (неустойчивое) - "покой" (устойчивый) палеопроцесс протекает под знаком антитезы "состояние возбуждения - состояние угнетения или торможения". Первое из них сопровождается сдвигом потенциала в сторону минуса, второе - в сторону плюса, и оба обладают одинаковой степенью устойчивости. Какого-либо особого уровня нуля или покоя, который как-либо качественно отличался бы от всех прочих, палеокинетический процесс не знает.
Далее палеопроцессу чужды ограничения, создаваемые законом "все или ничего". Обнаруживаемые им смещения потенциала и изменения длины и напряжения гладких мышечных волокон протекают с самыми разнообразными градациями силы и деятельности. Не подчиняясь закону "все или ничего". Палеокинетический процесс чужд и его необходимому спутнику - явлению стойких порогов: мера возбудимости палеокинетического элемента может колебаться в гораздо более широких пределах, нежели у неоэлемента, но при этом даже на самые слабые раздражения палеоэлемент откликается какими-то, хотя бы и слабыми, изменениями степени своей возбужденности. Для возбудимости неокинетического элемента характеристичны те минимальные константы раздражения, ниже которых он уже перестает отвечать; для возбудимости же палеоэлемента характеристичными являются те коэффициенты пропорциональности, которые определяют зависимость между изменениями силы раздражения и изменениями результирующего ответа.
Не обнаруживая взрывообразных вспышек возбуждения на гомогенном фоне покоя, палеокинетический процесс не дает и явления фазовой волны: его протяжные сдвиги растекаются по волокну медленно и со значительным декрементом. Наконец, в противоположность откликанию на надпороговые раздражения "ударом на удар", характерному для типа возбудимости неоэлемента, палеокинетические элементы возбудимы не сразу: они требуют повторной и настойчивой раскачки (так называемый итеративный тип возбудимости Lapicgue), но зато после прекращения серии возбуждающих воздействий часто обнаруживают оборотную сторону той же инерции - дают длящийся еще некоторое время остаточный разряд.
Самый механизм распространения, а особенно передачи нервного процесса с одного элемента на другой, резко различен у обеих описываемых систем: в неокинетическом аппарате если и не господствует, то, во всяком случае, занимает очень видное место биоэлектрический запальный процесс, в то время как в палеокинетической системе главенствует филогенетически древний гуморальный механизм передачи2.
Предельное однообразие, негибкость и отрывистость неокинетического процесса, единственного, чем располагает для своих отправлений соматическая нервная система, были бы слишком дорогой платой за принесенные им преимущества быстроты и мощности, если бы не одна группа фактов фундаментального значения, вносящая настоятельно необходимый здесь корректив.
Прежде всего нужно констатировать, что перечень физиологических отправлений, доступных неокинетическому элементу, исчерпывается стандартной неокинетической вспышкой только, если ограничить круг рассматриваемых явлений теми, которые характеризуются скоростным распространением по типу фазовой волны. За пределами этого ограничительного условия существует целая широкая область явлений, присущих этим же элементам и обнаруженных позднее из-за их значительно более трудной наблюдаемости. Явления этой области, относясь, несомненно, также к категории возбудительных процессов, резко обособляются от неокинетического процесса целым рядом четких отличий.
Эти электротонические состояния могут обладать как тем, так и другим знаком (это так называемые central excitatory state и central inhibitory state Sherrington, т.е. проявляться в повышении или угнетении их возбудимости и проводимости. Первый вид сдвига обозначается еще как "облегчение" (facilitation); второй - известен в случае центрального происхождения под названием субординационного торможения, сеченовского торможения и др.
Именно в синапсах всего яснее выражена роль, выпадающая в неокинетической системе на долю гуморальных механизмов передачи возбуждения. Весь процесс прохождения залпов возбуждения через спинальные синапсы неоспоримо совершается при существенном участии биоэлектрической слагающей: это отчетливее всего доказывается их способностью пропускать через себя цепочки спайков точным счетом. В то же время наличие гуморальной компоненты в процессе синаптической передачи возбуждения в настоящее время доказано неоспоримо, хотя и не достигнуто еще полного единодушия по вопросу о механизме совместного действия обоих факторов. Очень вероятно, что синаптическая задержка проведения возбуждения обусловливается именно превращением возбуди тельного процесса в области синапса из биоэлектрической фазовой волны в более сложное электрохимическое явление.
Эти агенты удобно подразделяются на три группы: 1) электрическое поле подпороговой интенсивности, 2) другие адекватные возбудители неокинетического процесса при подпороговой дозировке и 3) ряд фармако-химических агентов, являющихся обычно адекватным возбудителями для палеокинетической системы, но неадекватных по отношению к неокинетическому возбуждению. В качестве типового представителя альтерирующих агентов лучше всего подходит первая группа. Действие их обнаруживается в нескольких закономерных рядах явлений.
Во-первых, они вызывают смещение всех порогов, характеризующих меру возбудимости элемента к неокинетическому процессу. Во-вторых, параллельно этому вызываются и смещения всех амплитудных и скоростных характеристик протекания самой неокинетической вспышки возбуждения: вольтажа спайка и следовых биоэлектрических явлений, длительности всех последовательных фаз стандартной цепочки возбуждения, скорости распространения фазовой волны и т.д. В-третьих, специально в мышечном волокне параллельно уже перечисленным смешениям возникают еще сдвиги всех механических параметров: и длины покоя, и модуля упругости, и коэффициента вязкости. Тем самым, следовательно, смещается и кривая зависимости между длиной мышечного элемента и его напряжением, характеристическая диаграмма длин напряжений.
Если альтерирующим агентом является экзогенное электрическое поле, то вся перечисленная совокупность смещений есть не что иное, как пфлюгеровский электроток. Все имеющиеся данные о проявлениях электротона на неокинетическом элементе согласно свидетельствуют о не знающем изъятий правиле параллелизма протекания всех перечислявшихся смещений. Нарастание положительного потенциала (анэлектротона) вызывает постепенно усиливающиеся смещения в сторону общего угнетения, способного прогрессировать вплоть до полного паралича возбудимости и жизнедеятельности. Нарастание электроотрицательности протекает двуфазно, как это было впервые установлено и изучено Н.Е. Введенским, назвавшим эту группу явлений парабиозом. Умеренный отрицательный потенциал (катэлектротон) сопровождается сдвигами в направлении снижения порогов, увеличения амплитудных и скоростных показателей возбуждения и смещениями мышечных параметров в сократительном направлении. Прогрессивное нарастание катэлектротона проводит все указанные экзальтационные сдвиги через некоторый максимум, вслед за которым начинается их обратное развитие с последующим переходом во все углубляющееся угнетение, способное, как и при анэлектротоне, дойти до полного паралича. Это катэлектротоническое или парабиотическое угнетение вслед за перевозбуждением представляет собой, скорее всего, угнетение вследствие перевозбуждения и, действительно, в ряде вариантов опытов Введенского производит впечатление оглушения нервно-мышечного субстрата чрезмерной для него возбудительной нагрузкой.
К настоящему времени можно считать твердо установленной справедливость правила параллелизма смещений по отношению ко всем без исключения видам альтерирующих агентов любой группы. Хотя одни и те же агенты бывают способны при различных дозировках и различных условиях опыта вызывать смещения то катэлектротонического, то анэлектротонического знака, однако неукоснительно во всех случаях тот или другой знак смещения оказывается охватывающим весь список смещаемых характеристик.
Особенно важно подчеркнуть, что, каковы бы ни были причины, обусловившие альтерационные смещения в неокинетическом элементе, эти смещения всегда сопровождаются возникновением в альтерированном пункте эндогенного электрического поля того или другого знака, т.е. смещениями биоэлектрического потенциала. Амплитуды этих смещений потенциала имеют тот же порядок величины (близ 1 млВ и ниже), что и следовые потенциалы неокинетической вспышки и "медленные потенциалы" палеокинетического нервного процесса, т.е. они намного ниже смещений потенциала при неокинетическом спайке. Знак эндогенного поля, возникающего в связи с альтерацией, т.е. появление кат- или анэлектротонического смещения, строго согласуется с экзальтационным или тормозным характером альтерационных изменений, таким образом, все виды альтераций, т.е. все протекающие по правилу параллелизма смещения показателей возбудимости и возбуждения неокинетического элемента, глубоко и неразрывно связаны с явлениями электротона.
Может быть, наиболее замечательная сторона альтерационного круга явлений сводится к следующему. Как указано, альтерационные смещения показателей сопровождаются сравнительно медленными, длительными и низковольтными смещениями биоэлектрического потенциала, совершающимися в разных случаях как в сторону минуса, так и в сторону плюса. Среди них нет более устойчивых или менее устойчивых состояний; они протекают под знаком антитезы "состояние экзальтации - состояние угнетения или торможения", причем оба эти состояния обладают одинаковой степенью устойчивости. Какого-либо особого, качественно отличного от всех прочих уровня нуля или покоя среди них нет.
Альтерационные смещения показателей не связаны ограничениями, налагаемыми законом "все или ничего", и протекают с самыми разнообразными градациями интенсивности. Не подчиняясь закону "все или ничего", альтерации чужды и явлению стойких порогов: даже на самые слабые альтерирующие воздействия неокинетический элемент откликается какими-то, хотя бы и слабыми, смещениями своих характеристик.
Далее, процесс альтерационного смещения распространяется вдоль элемента не по типу фазовой волны: его протяжные сдвиги растекаются по волокну медленно и со значительным декрементом. Наконец, электротонические смещения показателей возбудимости и характеристик возбуждения, если вызывать их посредством адекватных, но подпороговых раздражений, не проявляются с первого раздражения, а требуют повторной и настойчивой раскачки (так называемая суммация подпороговых раздражений), но зато после прекращения серии смещающих воздействий часто обнаруживают явление, во всех отношениях сходное с остаточным разрядом.
Если еще добавить ко всему сказанному, что в настоящее время гуморальный, медиаторный характер альтерационных смещений не подвергается никакому сомнению, то окажется, что описанная картина смещений всех характеристик возбудимости неокинетического элемента и протекания его возбудительной вспышки есть не что иное, как палеокинетический процесс, перенесенный на неокинетический субстрат со всеми своими свойствами, включая даже такие (например, способность к иррадиации), которые, казалось бы, стоят в прямом противоречии с его морфологической структурой. Итак, пороги возбудимости, амплитуда и быстрота протекания спайка, скорость распространения фазовой волны, длительности, интенсивности и сопутствующие потенциалы постэксцитаторных фаз, механические параметры поперечнополосатой мышцы - короче говоря, все свойства и стороны неокинетического процесса обладают закономерной изменяемостью в неразрывной связи и строгом параллелизме с проявлениями палеокинетического процесса, развертывающегося на том же субстрате. Неоспоримо, что под этой связью и параллелизмом скрыта прямая причинная обусловленность, свидетельствующая о том, что палеокинетический процесс обладает способностью являться регулятором неокинетического процесса, обеспечивающим последнему ту самую гибкость и настраиваемость, которой так недостает ему, взятому в изолированном виде.
В частности, применительно к скелетной мышце установленное выше тождество между совокупностью электротонических смещений и палеокинетическим процессом приводит к очень важному выводу. В полном соответствии с ним и охарактеризованные выше электротонические смещения мышечных параметров - длины покоя и коэффициентов упругости и вязкости - обнаруживают полную аналогию с основным механическим сократительным процессом палеокинетической гладкой мышцы; это есть физиологическая деятельность поперечнополосатой мышцы по образу и подобию гладкой. Обобщая все известное по этому поводу, мы имеем все основания утверждать, что это есть тот самый круг явлений, который обозначается термином "физиологический тонус поперечнополосатой мышцы", до сих пор не имеющим точного и общепринятого определения. Все изложенное и приводит нас к этому искомому точному определению: мышечный тонус есть палеокинетический модус работы поперечнополосатой мышцы, иными словами - деятельность ее по образу и подобию гладкой мышцы. Это определение согласуется со всем имеющимся фактическим материалом и при этом открывает очень широкие горизонты для дальнейших физиологических обобщений накопленных к настоящему моменту фактов.
Прежде всего из сказанного следует, что физиологический тонус скелетной мышцы есть сложная и целостная совокупность явлений отнюдь не одного только механического порядка В соответствии с правилом параллелизма катэлектротоническое смещение тонуса мышцы проявляет себя, с одной стороны, уменьшением длины покоя волокна (т.е. его укорочением), сопровождаемым возрастанием его коэффициентов упругости и вязкости; с другой же стороны, оно выражается в увеличении его возбудимости, т.е. снижении всех порогов, и в возрастании амплитуд всех сторон неокинетического физического сокращения: его высоты, мощности, скорости, амплитуды спайка и т.д. Иначе говоря (слегка жертвуя точностью определений в интересах наглядности), в механическом плане катэлектротонический сдвиг тонуса проявляет себя двояко: в виде нарастания тонического напряжения мышцы и в виде создания предпосылок для усиления физического сокращения и напряжения (неокинетической вспышки), разыгрывающихся на его фоне. Анэлектротоническое смещение (угнетение) тонуса проявляет себя всесторонне-обратным образом, вплоть до полного блокирования неокинетического процесса.
Рядом с этим следует отметить, что подчеркивавшийся выше строгий параллелизм между постэксцитаторными фазами колебаний возбудимости и сопутствующими колебаниями следовых потенциалов может теперь уже легко быть расценен как имеющий все ту же электротоническую природу. Таким образом, серия постэксцитаторных сдвигов, охватывающих совокупность всех сторон возбудимости и возбуждения по правилу параллелизма, есть не что иное, как молниеносно быстрая последовательность альтераций сменяющихся знаков. Сопоставляя этот вывод с данным выше определением физиологического тонуса неокинетической мышцы, мы обнаружим, что тонические смещения отнюдь не обязательно медлительны по своей природе: цепочка постэксцитаторных смещении включает в себя и быструю, закономерную последовательность колебаний механических параметров тонуса. Как показывает точный анализ, при оптимуме частоты тетанизации эти быстрые следовые смещения тонуса прямо способствуют увеличению высоты и слитности тетануса.
Определение тонической деятельности поперечнополосатой мышцы как палеокинетического модуса ее работы подкрепляется и констатированными при ее тонических сокращениях медленными, низковольтными сдвигами биоэлектрических потенциалов, и доступностью для этих сокращений любой длительности, и возможностью для них любых градаций интенсивности, т.е. их иммунитетом по отношению к закону "все или ничего", и отсутствием в них явления фазовой волны, и, наконец, равной возможностью для них изменений обоих знаков. Действительно, в области тонической деятельности поперечнополосатой мышце доступно как активное укорочение, так и активное удлинение, совершенно чуждое неокинетическому процессу. Такого рода активное удлинение наблюдается, например, при явлении реципрокного расслабления мышц-антагонистов, играющем важнейшую роль в координации и описываемом ниже.
Сделанный подробный анализ альтерационных, иначе - электротонических, иначе - палеокинетических, явлений в неокинетической нервно-мышечной системе и тех регуляционных возможностей, которыми обладает палео-кинетический процесс по отношению к неокинетическому взрывному стандарту, нужен был в настоящем изложении потому, что (как это уже проскальзывало и выше) все эти явления отнюдь не относятся к числу только экзогенно вызываемых, искусственных процессов. Как показывает широкий круг разнороднейших наблюдений, все те явления, которые мы обобщили под названием палеокинетического процесса, действительно непрерывно имеют место в физиологических условиях на неокинетических субстратах неповрежденного организма, играя в них координационную роль первостепенной важности. У высших позвоночных этот процесс является орудием центральной регуляции и возникает в стволовых мезэнцефалических ганглиях головного мозга спускаясь оттуда по проводящим путям спинного мозга к синапсам передних рогов и далее - по мотоневронам - к скелетным мышцам. Этот центрально управляемый палеокинетический регуляционный процесс многократно просвечивал в наблюдениях разных авторов, по большей части и не подозревавших, что они наблюдают один и тот же цикл процессов. И спинномозговые "медленные потенциалы" американских авторов, и переменные состояния возбудимости и угнетения (CES И CIS) Sherington, и интермиттирующий фактор Ваrron и Matthews, и субординация Lapicgue, и торможение Сеченова, и т.д. - все это может сейчас уже, без сомнений, быть причислено к проявлениям описываемого регуляционного цикла. Как будет далее показано, этот цикл и представляет собой физиологическое содержание функции наинизшего из координационных уровней построения человека - рубро-спинального уровня палеокинетических регуляций А, к характеристике которого мы и переходим.