Виды термической обработки

 

Любой процесс термической обработки можно описать графиком, показывающим изменение температуры во времени. По графику можно определить температуру нагрева, скорости нагрева и охлаждения, длительность выдержки при температуре нагрева и общую продолжительность процесса, но получить информацию о виде термической обработки не представляется возможным. Вид термической обработки определяется не характером изменения температуры во времени, а типом фазовых и структурных изменений в металле. Основываясь на этом признаке, А. А. Бочвар разработал классификацию основных видов термической обработки металлов и сплавов.

Термическая обработка подразделяется на собственно термическую, химико-термическую и термомеханическую обработки.

Собственно термическая обработка заключается только в термическом воздействии на металл или сплав. При химико-термической обработке дополнительно производится диффузионное насыщение металлами и неметаллами. Термомеханическая обработка предусматривает сочетание термического воздействия и пластической деформации.

Собственно термическая обработка включает следующие основные виды: отжиг; закалка; отпуск и старение.

 

Отжиг

 

Отжиг – операция термической обработки, включающая нагрев стали, как правило, выше температуры фазовых превращений, выдержку и последующее медленное охлаждение, осуществляемое, чаще всего, вместе с печью.

При медленном охлаждении стали по своему состоянию приближаются к фазовому и структурному равновесию, а получаемые структурные составляющие соответствуют диаграмме «железо – цементит». После отжига сталь имеет низкие значения твердости и прочности и высокую пластичность.

В большинстве случаев отжиг является подготовительной термической обработкой. Отжигу подвергают отливки, поковки, прокат. В некоторых случаях отжиг является конечной термической обработкой, например отжиг крупных отливок.

Различают отжиг I и II рода.

 

2.3.1.1 Отжиг I рода

 

Отжиг 1-го рода частично или полностью устраняет отклонения от равновесного состояния, возникшие при предыдущей обработке, причем его проведение не обусловлено фазовыми превращениями. Различают следующие разновидности отжига 1-го рода: диффузионный, рекристаллизационный и релаксационный.

Диффузионному или гомогенизирующему отжигу подвергают отливки и слитки из легированных сталей для уменьшения дендритной ликвации. Металл нагревают до температур 1100…1200°С, при которых наиболее полно протекают диффузионные процессы, необходимые для выравнивания химического состава по всему объему детали.

Нагрев осуществляется со скоростью 100-150 град/ч, а продолжительность выдержки зависит от химического состава стали и массы садки. Чрезмерно длительные выдержки при гомогенизации нецелесообразны, так как они снижают производительность процесса и приводят к излишнему расходу энергоресурсов. Время выдержки при диффузионном отжиге может достигать нескольких десятков часов.

После гомогенизации сталь имеет крупное зерно, которое измельчается при последующей обработке давлением или обычном полном отжиге.

Рекристаллизационному отжигуподвергают холоднодеформированный металл для снятия наклепа. Кроме рекристаллизации феррита при отжиге могут происходить коагуляция и сфероидизация цементита, что повышает пластичность и облегчает обработку давлением. Данный вид термической обработки предусматривает нагрев стали выше температуры рекристаллизации. Для низкоуглеродистых сталей (до 0,2%С) температуру отжига после прокатывания или штампования заготовок выбирают в пределах 680…700оС с выдержкой до 10 часов. Отжиг калиброванных прутков после холодной протяжки из легированных сталей проводят при 680…740оС в течение 0.5…1.5 ч.

Релаксационный отжиг используют для обработки литья, сварных соединений и механообработанных деталей, когда в результате неравномерного охлаждения или неоднородного пластического деформирования возникают напряжения, наличие которых может вызвать изменение размеров и деформацию деталей.

Отжиг для снятия напряжений осуществляется при температурах 160… 700оС с последующим медленным охлаждением. Например, для многих деталей прецизионных станков проводят отжиг при 570…600оС в течение 2…3 часов после основной механической обработки и при 160…180оС такой же продолжительности после окончательной механической обработки для снятия шлифовальных напряжений. Отжиг для снятия напряжений после сварки проводится при 650…700оС.

 

2.3.1.2 Отжиг II рода

Отжиг II родазаключается в нагревании стали до температур свыше АС1 или АС3, выдержке и последующем медленном охлаждении. В процессе нагрева и охлаждения происходят фазовые превращения, которые определяют структуру и свойства стали.

Основные цели отжига: перекристаллизация стали, снятие внутренних напряжений, снижение твердости и улучшение обрабатываемости.

При фазовой перекристаллизации в процессе отжига измельчается зерно, устраняется видманштеттовая структура и строчечность. Характерным структурным дефектом стальных отливок и сталей, нагретых до температур 1100…1200оС (явление перегрева), является наличие крупного зерна аустенита. При ускоренном охлаждении крупнозернистого аустенита создаются условия для образования видманштеттовой структуры, которая характеризуется тем, что кристаллы доэвтектоидного феррита ориентированно произрастают относительно кристаллической решетки аустенита и имеют форму пластин. Видманштеттов феррит наблюдается лишь в сталях, содержащих менее 0,4 % С и наиболее четко проявляется при ускоренном охлаждении стали в интервале температур от А1 – 50оС до 600..550оС.

Строчечная структура возникает из-за загрязнения неметаллическими включениями, которые при обработке давлением вытягиваются, и феррит, зарождаясь на них, образует вытянутые скопления.

Еще одной важной целью отжига является предотвращение образования флокенов при производстве крупных поковок.

Известно, что одной из главных причин образования флокенов является повышенное содержание водорода в стали. Флокены обычно образуются в катаной стали или в поковках, но иногда встречаются и в литой стали. Как правило, они располагаются в центральной части поковок и берут свое начало в ликвационных участках, обогащенных углеродом, фосфором, серой и легирующими элементами.

Причиной образования флокенов является диффузионно-подвижный водород, а температура их образования лежит ниже 200оС. Образованию флокенов способствует наличие дополнительных внутренних напряжений (структурных, термических и механических), которые увеличивают локальную концентрацию водорода в твердом растворе. Только растягивающие напряжения при совместном действии с водородом могут вызвать образование флокенов, сжимающие напряжения уменьшают опасность флокенообразования.

Все стали общего назначения по степени флокеночувствительности подразделяют на четыре группы. К первой группе относят углеродистые стали 15…55. Во вторую группу включены низколегированные стали: 20Х…55Х, 10Г2, 50Г, 50Г2, 60ХГ, 15ХМ, 35ХМ, 38Х2МЮА, 20ГС, 25ГС, 20ХГСА, 35ХГСА, 08ГДНФ. Третью группу составляют среднелегированные стали: 20ХН; 40ХН; 50ХН; 60ХН; 40ХНМ; 34ХН1МА; 38ХГН; 12Х1М1Ф; 15Х1М1Ф; 5ХГМ. Высоколегированные стали 34ХН3М. 38ХН3М, 18Х2Н4МА, 5ХНМ, 5ХНМ2 по своей флокеночуствительности отнесены к четвертой группе.

return false">ссылка скрыта

Продолжительность противофлокенного отжига поковок, в зависимости от флокеночувствительности стали и размеров поковок, может достигать несколько сотен часов, что делает этот процесс дорогостоящим.

Существуют следующие виды отжига 2-го рода: полный, неполный и изотермический отжиг. (рис. 13).

При полном отжиге доэвтектоидная сталь нагревается выше Ас3 на 30~50°С, выдерживается при этой температуре до полного завершения фазовых превращений и медленно охлаждается. При этом ферритно-перлитная структура превращается при нагреве в аустенитную, которая при последующем медленном охлаждении распадается на феррит и перлит, и, таким образом, происходит полная перекристаллизация.

На практике скорость нагрева обычно близка к 100 град/ч, а продолжительность выдержки колеблется от 0,5 до 1 ч на 1 т нагреваемого металла. Медленное охлаждение с температуры нагрева должно обеспечить распад аустенита с образованием перлита. Легированные стали охлаждают значительно медленнее (10 - 100 град/ч), чем углеродистые (150 - 200 град/ч).

Рисунок 13 - Схемы проведения отжига и нормализации

доэвтектоидной стали

 

Чрезмерное превышение температуры нагрева над точкой Ас3 вызывает рост зерна аустенита, что ухудшает свойства стали.

Неполный отжигзаключается в нагреве выше АС1 и медленном охлаждении. При этом происходит частичная перекристаллизация только перлита, а феррит в доэвтектоидных сталях и цементит в заэвтектоидных не претерпевают изменений.

Неполному отжигу подвергают доэвтектоидные стали с целью снятия внутренних напряжений и улучшения обрабатываемости резанием. Применение его допустимо лишь в том случае, когда нагрев в процессе предварительной обработки давлением не привел к образованию крупного зерна (иначе необходим полный отжиг с фазовой перекристаллизацией).

Неполный отжиг заэвтектоидных сталей называется сфероидизирующим. В результате получают структуру зернистого перлита. Охлаждение при сфероидизации должно быть медленным, чтобы обеспечить распад аустенита на ферритно-карбидную смесь и коагуляцию образовавшихся карбидов. Целью проведения сфероидизирующего отжига является улучшение обрабатываемости резанием. Кроме этого, стали со структурой зернистого перлита менее склонны к перегреву, образованию трещин и деформации при последующей закалке.

Изотермический отжигчасто проводят на практике с целью экономии времени. В этом случае деталь нагревают, а затем быстро охлаждают (чаще переносом в другую печь) до температуры, лежащей ниже АС1 на 50-100°С. При этой температуре деталь выдерживается до полного распада аустенита (т. е. осуществляется изотермическая выдержка), после чего охлаждается на воздухе (рис. 13).

В настоящее время изотермический отжиг часто применяют для легированных сталей, так как он сокращает продолжительность процесса. Для ускорения отжига температуру изотермической выдержки желательно выбирать близкой к температуре минимальной устойчивости переохлажденного аустенита в перлитной области.

После изотермического отжига получается более однородная структура, что связано с выравниванием температуры по сечению детали и превращением по всему объему одновременно.

 

2.3.1.3 Нормализация

Нормализацией называется нагрев доэвтектоидной стали до температуры выше АС3, а заэвтектоидной – выше Аcm на 30…50°С с последующим охлаждением на воздухе. При нормализации происходит перекристаллизация стали и устранение крупнозернистой структуры, возникающей при литье или ковке.

В результате охлаждения на воздухе распад аустенита на ферритно-цементитную смесь происходит при более низких температурах, а следовательно, повышается дисперсность её структуры и твердость. Полученная структура называется сорбитом.

Нормализации подвергают низкоуглеродистые стали вместо отжига. Твердость при этом выше, чем при отжиге, но для низкоуглеродистых сталей ее значения достаточно низкие. При этом по сравнению с отжигом улучшается качество поверхности при резании.

Для среднеуглеродистых сталей нормализацию применяют вместо закалки и высокого отпуска. Механические свойства при этом снижаются, но уменьшается деформация изделий по сравнению с возникающей при проведении закалки и высокого отпуска.

Высокоуглеродистые (заэвтектоидные) стали подвергают нормализации с целью устранения цементитной сетки.

Нормализацию с последующим высоким отпуском (600 - 650°С) часто применяют для исправления структуры легированных сталей вместо отжига.