Ошибки аппроксимации.
Практически всегда фактическое значение результативного признака отличаются от теоретических, рассчитанных по уравнению регрессии. Чем меньше эти отличия, тем ближе будут теоретические значения подходить к эмпирическим следовательно, тем лучше подобрано уравнение регрессии Величина отклонений фактических значений от расчетных результативного признака по каждому наблюдению представляет собой ошибку аппроксимации.
Ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю:
Эти ошибки уже поддаются сравнению, но они оценивают каждое наблюдение в отдельности. Такую ошибку принято называть относительной ошибкой аппроксимации.
Чтобы оценить качество модели в целом, можно определить среднюю ошибку аппроксимации, представляющую собой среднюю арифметическую относительных ошибок аппроксимации по всем наблюдениям, включаемым в модель: