МИР РНК - ДРЕВНИЙ И СОВРЕМЕННЫЙ

Таким образом, РНК представляется наиболее самодостаточным веществом живой материи. Она принципиально способна выполнять все или почти все функции, которые свойственны белкам, включая формообразование и биохимический катализ, и в то же время может быть полноценным генетическим веществом с его репли-кативной и кодирующей функциями [13]. Осознание этих фактов и привело биологов, химиков и геологов к гипотезе о древнем "мире РНК", который эволюционно предшествовал нашей нынешней ДНК-РНК-белковой жизни [52] (подробнее см. [13]). В мире РНК не было ни белков, ни ДНК, а лишь ансамбли различных молекул РНК, выполняющих разные вышеперечисленные функции. Это были, скорее всего, бесклеточные системы. Формирование клеточных структур, безусловно, требует участия, по крайней мере, белков и липидов, которых еще не было. Компартментализация ансамблей РНК в виде коацерватных капель также была маловероятна, по причине отсутствия полипептидов, полисахаридов и других полимеров, способных к коацервации. Тем не менее, для того чтобы каждый ансамбль РНК мог существовать как система, наследовать приобретенные признаки, полезные для всей системы, и эволюционировать, его РНК-репликазы, лиганд-связывющие РНК, РНК-синтетазы и продукты синтезов должны быть, очевидно, как-то объединены в пространстве. Поэтому в большинстве теорий происхождения жизни возникновение ограничивающих мембран или хотя бы поверхностей раздела фаз постулируется необходимым условием начала эволюции, в том числе эволюции ансамблей РНК (например, см. [53]).

Возможна, однако, и альтернатива, на мой взгляд, даже более вероятная. Около десяти лет назад в Институте белка РАН моим учеником А.Б. Четвериным с сотрудниками была экспериментально показана способность молекул РНК формировать молекулярные колонии на гелях или других твердых средах, если на этих средах им были предоставлены условия для репликации [54,55] (рис. 5). Смешанные колонии РНК на твердых или полутвердых поверхностях и могли быть первыми эволюционирующими бесклеточными ансамблями, где одни молекулы выполняли генетические функции (репликацию молекул РНК всего ансамбля), а другие формировали необходимые для успешного существования структуры (например, такие, которые адсорбировали нужные вещества из окружающей среды) или были рибозимами, ответственными за синтез и подготовку субстратов для синтеза РНК. Такая бесклеточная ситуация создавала условия для очень быстрой эволюции: колонии РНК не были отгорожены от внешней среды и могли легко обмениваться своими молекулами - своим генетическим материалом. Легкое распространение молекул РНК через среду, в том числе атмосферную, также было продемонстрировано в прямых экспериментах [54]. Более того, как показали недавние эксперименты той же группы исследователей, молекулы РНК при столкновениях в водной среде могут спонтанно обмениваться кусками, то есть обладают способностью к неэнзиматической рекомбинации [56].

Рис. 5. Колонии реплицирующихся молекул РНК на агарозном геле [54, 55] Слева - колонии РНК, выросшие на закрытой чашке Петри в течение одного часа при температуре 25°С. Справа - колонии РНК выросшие на открытой чашке Петри в тех же условиях (заражение молекулами РНК из воздуха)

 

Именно такие условия постулировал К. Вуз для возникновения Универсального Предшественника живых существ на Земле [57]: высокий уровень мутаций (ошибок репликации) из-за примитивности и несовершенства механизмов репликации генетического материала, свободный обмен генетическим материалом между предшественниками клеток - "прогенотами" - и коммунальный характер бытия этих предшественников, когда любые продукты и инновации одних становились достоянием всех ("от каждого по способностям - каждому по потребностям"). Однако, в отличие от гипотезы К. Вуза, я бы предпочел отдать роль Универсального Предшественника доклеточной - бесклеточной - форме существования мира РНК, когда еще не было ни ДНК, ни механизмов синтеза белка. Универсальным Предшественником могло быть как раз коммунальное сообщество колоний-ансамблей РНК, существующих и размножающихся на твердых или гелеобразных поверхностях первобытной Земли, не ограниченных физически никакими мембранами и фазовыми разделами и потому свободно обменивающихся как генетическим материалом, так и продуктами катализируемых реакций.

Эта коммунальная форма существования мира РНК - своего рода Солярис, - как уже указывалось, должна была очень быстро эволюционировать. Во всяком случае, весь путь эволюции до индивидуальных организмов с клеточной структурой, ДНК и современным аппаратом белкового синтеза был пройден, по-видимому, менее чем за полмиллиарда лет (период от 4 млрд. до 3.5 млрд. лет назад). Совершенствование колоний-ансамблей РНК за счет естественного отбора должно было происходить в направлении как улучшения каталитических механизмов, так и увеличения точности репликации и наследования. Колонии РНК, "научившиеся" делать белковые катализаторы, естественно, приобретали громадное преимущество перед другими в скоростях и качестве катализируемых реакций и потому быстро вытесняли "неумелых" - как за счет конкуренции, так и за счет передачи им этой способности. На базе РНК появлялся и совершенствовался аппарат белкового синтеза, а ввиду коммунального и пандемического характера мира РНК вырабатывался универсальный генетический код.

Однако кодируемый синтез белков требовал повышенной точности репликации генетического материала и упорядочивания продукции разных белков. Это привело к необходимости дифференциации части РНК (генетической РНК) и ее модификации в ДНК, обладающей способностью к более точному копированию, а к тому же и существенно большей химической стабильностью, чем РНК. Наконец, эффективность и устойчивость таких систем могла быть значительно повышена за счет их обособления от окружающей среды, и они окружаются мембранами белково-липидной природы. Коммунальный мир распадается на индивидуальные, но высоко эффективные ячейки - клетки, особи, организмы, и начинается их собственная эволюция и собственные родословные. Из коммунального Универсального Предшественника выходят две основные ветви микроорганизмов - бактерии (эубактерии) и ар-хеи (архебактерии), формируются их клеточные сообщества на основе взаимодействия их метаболизмов, а затем их симбиотические отношения приводят к появлению химер, и возникают первые эукарии - предшественники высших эукариотических организмов.

Что же стало с миром РНК после распада коммуны? Хотя коммуна распалась, мир РНК сохранился в каждой клетке каждого живого организма. Основой современной жизни является наследуемый биосинтез белков, который определяет все признаки ныне существующих живых организмов. В качестве центрального звена этого процесса биосинтеза белков выступает совокупность взаимодействующих друг с другом молекул РНК различных типов, прежде всего рибосомной РНК, формирующей аппарат белкового синтеза, тРНК, доставляющей в рибосому активированные аминокислоты для построения полипептид-ных цепей белков, и мРНК, несущей в своей нук-леотидной последовательности программу для синтеза белка (см. [13], рис. 1). Кроме этих трех основных представителей внутриклеточного мира РНК, обнаружен целый ряд минорных РНК, обеспечивающих процессы редупликации ДНК и наследования, копирования генов и формирова-

ния мРНК, регуляции синтеза белков, транспорта белков через мембраны, регуляции эмбриогенеза и клеточной дифференцировки, детерминации продолжительности жизни, и так далее. Каждый год открываются все новые виды минорных РНК в клетках современных организмов, выявляется их важнейшая роль в жизни организмов [58].

Еще до недавнего времени мы очень мало знали о внутриклеточном мире РНК, и сейчас происходит серьезная переоценка относительного вклада негенетических РНК в функционирование живых систем. Можно сказать, что совокупность молекул РНК - мир РНК - по-прежнему составляет ядро жизни. Современная жизнь - это РНК. передавшая часть своих генетических функций рожденному ею же родственному полимеру - ДНК, и синтезирующая белки для всеобъемлющего эффективного функционирования содержащих ее компартментов - клеток и многоклеточного организмов.

ЛИТЕРАТУРА

1. Kiesel A., Belozersky A. Uber die Nucleinsaure und die Nucleoproteide der Erbsenkeime // Hoppe-Seyler's Z. physiol. Chemie. 1934. Bd. 229. H. 4-6. S. 160-166.

2. Белозерский A .H., Дубровская И.И. О белках и тимонуклеиновой кислоте семян конского каштана // Биохимия. 1936. Т. 1. С. 665-675.

3. Caspersson Т., Landstrom-Hyden H., Aquilonius L. Cytoplasmanukieotide in eiweissproduzierenden Drusenzellen//Chromosoma. 1941. Bd. 2. S. Ill-131.

4. Bracket J. La detection histochimique et le microdosage des acides pentosenucleiques // Enzymologia. 1941-1942, V. 10. P. 87-96.

5. Avery О .Т., MacLeod CM., McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types // J. Exp. Med. 1944. V. 78. P. 137-158.

6. Спирин А.С. Современная биология и биологическая безопасность // Вестник РАН. 1997. № 7.

7. Chargaff E. Chemical specificity of nucleic acids and mechanism of their enzymatic degradation // Experientia. 1950. V. 6. P. 201-209.

8. Chargaff E. Structure and function of nucleic acids as cell constituents // Federation Proc. 1951. V. 10. P. 654-659.

9. Wilkins M.F.H., Stokes A.R., Wilson H.R. Molecular structure of deoxypentose nucleic acids // Nature. 1953. V. 171. P. 738-740.

10. Franklin R.E., Gosling R.G. Molecular configuration in sodium thymonucleate // Nature. 1953. V. 171. P. 740-741.

11. Watson J. D., Crick F. H. C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid // Nature. 1953. V. 171. P. 737-738.

12. Watson J. D., Crick F. H. C. Genetic implications of the structure of desoxyribose nucleic acid // Nature. 1953. V. 171. P. 964-967.

13. Спирин А.С. Биосинтез белков, мир РНК и происхождение жизни // Вестник РАН. 2001. № 4.

14. Спирин А.С., Белозерский А.Н., Шугаева Н.В., Ванюшин Б.Ф. Изучение видовой специфичности нуклеиновых кислот у бактерий // Биохимия. 1957. Т. 22. С. 744-754.

15. Belozersky A.N., Spirin A.S. A correlation between the compositions of the desoxyribonucleic and ribonucleic acids//Nature. 1958. V. 182. P. 111-112.

16. Crick F.H.C. The present position of the coding problem // Brookhaven Symposia in Biology. 1959. № 12. P. 35-39.

17. Volkin E., Astrachan L. Phosphorus incorporation in Escherichia coli ribonucleic acid after infection with bacteriophage T2 //Virology. 1956. V. 2. P. 149-161.

18. Jacob F., Monod J. Genetic regulatory mechanisms in the synthesis of proteins // J. Mol. Biol. 1961. V. 3. P. 318-356.

19. Спирин А.С., Белицина Н.В., Айтхожин М.А. Информационные РНК в раннем эмбриогенезе // Журнал общей биологии. 1964. Т. 25. С. 321-338.

20. Spirin A.S. Informosomes //European J. Biochem. 1969. V. 10. P. 20-35.

21. Spirin A.S. On "masked" forms of messenger RNA in early embryogenesis and in other differentiating systems // Current Topics in Developmental Biology. 1966. V. 1. P. 1-38.

22. Spirin A.S. Masked and translatable messenger ribonucleoproteins in higher eukaryotes // Translational Control / Eds. Hershey J.W.B., Mathews M.B., Sonenberg N., N.Y.: Cold Spring Harbor Laboratory Press, 1996. P. 319-334.

23. Brenner S., Jacob F., Meselson M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis//Nature. 1961. V. 190. P. 576-581.

24. Gros F., Gilbert W., Hiatt H. et al. Unstable ribonucleic acid revealed by pulse labeling of Escherichia coli // Nature. 1961. V. 190. P. 581-585.

25. Spiegelman S. The relation of informational RNA to DNA // Cold Spring Harbor Symp. Quant. Biol. 1961. V. 26. P. 75-90.

26. Богданова E.G., ГавриловаЛ.П.,Дворкин Г.А., Киселев Н.А., Спирин А.С. Изучение макромолеку-лярной структуры высокополимерной (рибосо-мальной) рибонуклеиновой кислоты из Escherichia coli // Биохимия. 1962. Т. 27. С. 387-402.

27. Spirin A.S. Some aspects of macromolecular structure of high-polymer RNA in solution // Acides ribonucleiques et polyphosphates: Structure, synthese et functions / Eds. Ebel J.P., Grunberg-Manago M. Paris: Editions du CNRS, 1962. P. 73-87.

28. Hall B.D., Doty P. The preparation and physical chemical properties of ribonucleic acid from microsomal particles // J. Mol. Biol. 1959. V. 1. P. 111-126.

29. Спирин А.С., ГавриловаЛ.П., Бреслер С.Е., Мосевицкий М.И. Изучение макромолекулярной структуры инфекционной рибонуклеиновой кислоты из вируса табачной мозаики // Биохимия. 1959. Т. 24. С. 938-947.

30. Spirin A.S. On macromolecular structure of native high-polymer ribonucleic acid in solution // J. Mol. Biol. 1960. V. 2. P. 436-446.

31. Vasiliev V.D., Selivanova O.M., Koteliansky V.E. Specific self-packing of the ribosomal 16S RNA // FEBS Letters. 1978. V. 95. P. 273-276.

32. Vasiliev V.D., Serdyuk I.N., Gudkov А .Т., Spirin A.S. Self-organization of ribosomal RNA // Structure, Function, and Genetics of Ribosomes / Eds. Hardesty B., KramerG. N.Y.: Springer-Verlag, 1986. P. 128-142.

33. Спирин А.С., Киселев Н.А., Шакулов Р.С., Богданов А.А. Изучение структуры рибосом: Обратимое разворачивание рибосомных частиц в рибо-нуклеопротеидные тяжи и модель укладки // Биохимия. 1963. Т. 28. С. 920-930.

34. Lerman M.I., Spirin A.S., Gavrilova L.P., Golov V.F. Studies on the structure of ribosomes: II. Stepwise dissociation of protein from ribosomes by caesium chloride and the re-assembly of ribosome-like particles // J. Mol. Biol. 1966. V. 15. P. 268-281.

35. Gavrilova L.P., lvanov DA., Spirin A.S. Studies on the structure of ribosomes: III. Stepwise unfolding of the 50S particles without loss of ribosomal protein // J. Mol. Biol. 1966. V. 16. P. 473-489.

36. Wimberly B.T., Brodersen D.E., Clemons W.M. et al. Structure of the 30S ribosomal subunit // Nature. 2000. V. 407. P. 327-339.

37. Schlunzen F., Tocilj A., Zarivach R. et al. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution // Cell. 2000. V. 102. P. 615-623.

38. Ban N., Nissen P., Hansen J. et al. Editions du CNRS, The complete atomic structure of the large ribosomal subunit at 2.4 E resolution // Science. 2000. V. 289. P. 905-920.

39. Yusupov MM., Yusupova G.Zh., Baucom A. et al. Crystal structure of the ribosome at 5.5 A resolution // Science. 2001. V. 292. P. 883-896.

40. Cundliffe E. Involvement of specific portions of ribosomal RNA in defined ribosomal functions: A study utilizing antibiotics // Structure, Function, and Genetics of Ribosomes / Eds. Hardesty B., Kramer G. N.Y.: Springer-Verlag, 1986. P. 586-604.

41. Fourmy D., Recht M.I., Blanchard S.C., Puglisi J.D. Structure of the A site of E. coli 16S rRNA complexed with an aminoglycoside antibiotic // Science. 1996. V. 274. P. 1364-1371.

42. Puglisi J.D., Williamson J.R. RNA interaction with small ligands and peptides // The RNA World, Second Edition / Eds. Gesteland R.F., Cech T.R., Atkins J.F. N.Y.: Cold Spring Harbor Laboratory Press, 1999. P. 403^25.

43. Ellington A., SzostakJ. In vitro selection of RNA molecules that bind specific ligands // Nature. 1990. V. 346. P. 818-822.

44. Tuerk С., Gold L. Systematic evolution of ligands by exponential enrichment // Science. 1990. V. 249. P. 505-510.

45. GoldL., Polisky B., Uhlenbeck 0., Yarus M. Diversity of oligonucleotide functions // Annual Review Biochem. 1995. V. 64. P. 763-797.

46. Kruger К., Grahowski P.J., Zaug A.J. et al. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahyrnena // Cell. 1982. V. 31. P. 147-157.

47. Guerrier-Takada С., Gardiner К., March Т. et al. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme // Cell. 1983. V. 35. P. 849-857.

48. Cech T.R., Golden B.L. Building a catalytic active site using only RNA // The RNA World. Sec. Ed./Eds. Gesteland R.F., Cech T.R., Atkins J.F. N.Y.: Cold Spring Harbor Laboratory Press, 1999. P. 321-347.

49. Noller H.F., Hoffarth V., Zimniak L. Unusual resistance of peptidyl transferase to protein extraction methods // Science. 1992. V. 256. P. 1416-1419.

50. Nissen P., Hansen J., Ban N. et al. The structural basis of ribosome activity in peptide bond synthesis // Science. 2000. V. 289. P. 920-930.

51. Ahlquist P. RNA-dependent RNA polymerase, viruses, and RNA silencing // Science. 2002. V. 296. P. 1270-1273.

52. Gilbert W. The RNA world // Nature. 1986. V. 319. P. 618.

53. Gilbert W., de Souza SJ. Introns and the RNA world // The RNA World. Sec. Ed./Eds. Gesteland R.F., Cech T.R., Atkins J.F. N.Y.: Cold Spring Harbor Laboratory Press, 1999. P. 221-231.

54. Chetverin A.B., Chetverina H.V., Munishkin A.V. On the nature of spontaneous RNA synthesis by Q{3 replicase // J. Mol. Biol. 1991. V. 222. P. 3-9.

55. Chetverina H.V., Chetverin A.B. Cloning of RNA molecules in vitro // Nucleic Acids Research. 1993. V. 21. P. 2349-2353.

56. Chetverina H.V., Demidenko А.А., Ugarov V.I., Chetverin A.B. Spontaneous rearrangements in RNA sequences // FEBS Letters. 1999. V. 450. P. 89-94.

57. Woese C.R. The universal ancestor // Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 6854-6859.

58. Storz G. An expanding universe of non-coding RNAs // Science. 2002. V. 296. P. 1260-1263.