ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ ТОКА И НАПРЯЖЕНИЯ

 

ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ ТОКА

ОСНОВНЫЕ ПОНЯТИЯ

 

Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего персонала от высокого напряжения.

Трансформатор тока имеет замкнутый магнитопровод 2 и две обмотки − первичную 1 и вторичную 3 (рис. 5.1). Первичная обмотка вклю­чается последовательно в цепь измеряемого тока I1, ко вторичной обмотке присоединяются измерительные приборы, обтекаемые током I2.

 

 

Рис. 5.1. Схема включения трансформатора тока:

1 – первичная обмотка; 2 – магнитопровод; 3 – вторичная обмотка

 

Трансформатор тока характеризуется номинальным коэффициентом трансформации

К1=I1ном / I2ном.,

где I1ном и I2ном.− номинальные значения первичного и вторичного тока соответственно.

Значения номинального вторичного тока приняты равными 5 и 1 А. Коэффициент трансформации трансформаторов тока не является стро­го постоянной величиной и может отличаться от номинального значения вследствие погрешности, обусловленной наличием тока намагничивания.

Токовая погрешность определяется по выражению

.

Погрешность трансформатора тока зависит от его конструктивных осо­бенностей: сечения магнитопровода, магнитной проницаемости материала магнитопровода, средней длины магнитного пути, значения I1w1. В зависи­мости от предъявляемых требований выпускаются трансформаторы тока с классами точности 0,2; 0,5; 1; 3; 10 (Д, Р, З).

Указанные цифры представляют со­бой токовую погрешность в процентах номинального тока при нагрузке первичной обмотки током 100 − 120% для первых трех классов и 50 − 120% для двух последних. Для трансформаторов тока классов точности 0,2; 0,5 и 1 нормируется также угловая погрешность.

Погрешность трансформатора тока зависит от вторичной нагрузки (со­противления приборов, проводов, контактов) и от кратности первичного тока по отношению к номинальному. Увеличение нагрузки и кратности тока приводит к увеличению погрешности.

При первичных токах, значительно меньших номинального, погреш­ность трансформатора тока также возрастает.

На рис. 5.2 представлены схемы соединений вторичных обмоток трансформаторов тока.

             
а) б) в)

 

Рис. 5.2. Схемы соединений вторичных обмоток трансформаторов тока:

а – звездой; б – треугольником; в – на сумму трех фаз

 

Трансформаторы тока класса 0,2 применяются для присоединения точных лабораторных приборов, класса 0,5 − для присоединения счетчиков денежного расчета, класса 1 − для всех технических измерительных прибо­ров, классов 3 и 10 − для релейной защиты.

Кроме рассмотренных классов выпускаются также трансформаторы то­ка со вторичными обмотками типов Д (для дифференциальной защиты), 3 (для земляной защиты), Р (для прочих релейных защит).

Токовые цепи измерительных приборов и реле имеют малое сопротив­ление, поэтому трансформатор тока нормально работает в режиме, близ­ком к режиму короткого замыкания. Если разомкнуть вторичную обмотку, магнитный поток в магнитопроводе резко возрастет, так как он будет определяться только МДС первичной обмотки. В этом режиме магнитопровод может нагреться до недопустимой температуры, а на вторичной разомкнутой обмотке по­явится высокое напряжение, достигающее в некоторых случаях десятков киловольт.

Из-за указанных явлений не разрешается размыкать вторичную обмот­ку трансформатора тока при протекании тока в первичной обмотке. При необходимости замены измерительного прибора или реле предварительно замыкается накоротко вторичная обмотка трансформатора тока (или шун­тируется обмотка реле, прибора).

При монтаже распределительных устройств напряжением 6 – 10 кВ применяют трансформаторы тока с литой и фарфоровой изоляцией, а при напряжении до 1000 В – с литой, хлопчатобумажной и фарфоровой изоляцией.

Измерительные трансформаторы тока изготовляют с номинальным вторичным током 1 и 5 А и первичным от 5 до 5000 А. Они допускают длительную токовую перегрузку, равную 110 % номинальной при условии, что превышение допустимой температуры подводящих шин не более 45 °С.

 

КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ ТОКА

 

Трансформаторы тока для внутренней установки до 35 кВ имеют ли­тую эпоксидную изоляцию. По типу первичной обмотки различают катушечные (на напряжение до 3 кВ включительно), одновитковые и многовитковые трансформаторы.

Трансформаторы тока для электроустановок напряжением до 1000 В показаны на рис. 5.3, а, б, в (катушечный, шинный ТШ-0,5 и шинный с литой изоляцией ТШЛ-0,5). В шинных трансформато­рах тока в качестве первичной обмотки используют шину, пропус­каемую через окно 5 сердечника трансформатора тока, на кото­рый намотана вторичная обмотка.

 

 

Рис. 5.3. Трансформаторы тока на напряжение до 1000 В:

а – катушечный; б, в – шинные ТШ-0,5 и ТШЛ-0,5

1 – каркас; 2, 4 – зажимы вторичнойи первичной обмоток;

3 – защитный кожух; 5 – окно

 

Проходные трансформаторы тока для внутренней установки на напряжение 10 кВ выполняют многовитковыми, одновитковыми и шинными с фарфоровой и пластмассовой (литой) изоляцией (рис.5.4,а-в).

 

 

Рис. 5.4. Трансформаторы тока на напряжение 10 кВ с литой изоляцией:

а – многовитковый ТПЛ-10; б – одновитковый ТПОЛ – 10; в – шинный ТПШЛ-10

1,2 – зажимы первичной и вторичной обмоток; 3 – литая изоляция;

4 – установочный угольник; 5 – сердечник

На рис. 5.5, а схематично показано выполнение магнитопроводов и об­моток, а на рис.5.5, б внешний вид трансформатора тока ТПОЛ-20 (проходной, одновитковый, с литой изоляцией на 20 кВ). В этих трансфор­маторах токоведущий стержень, проходящий через «окна» двух магнито­проводов, является одним витком первичной обмотки. Одновитковые трансформаторы тока изготовляются на первичные токи 600 А и более; при меньших токах МДС первичной обмотки I1w1 окажется недостаточ­ной для работы с необходимым классом точности. Трансформатор ТПОЛ-20 имеет два магнитопровода, на каждый из которых намотана своя вторичная обмотка. Классы точности этих трансформаторов тока 0,5; 3 и 10 Р. Магнитопроводы вместе с обмотками заливаются компаундом на основе эпоксидной смолы, который после затвердения образует монолитную массу. Такие трансформаторы тока имеют значительно меньшие раз­меры, чем трансформаторы с фарфоровой изоляцией, выпускавшиеся ра­нее, и обладают высокой электродинамической стойкостью.

 

а) принципиальное расположение магнитопроводов с обмотками
б)конструкция

 

Рис. 5.5. Трансформатор тока ТПОЛ-20:

1 – вывод первичной обмотки; 2 − эпоксидная изоляция;

3 − выводы вторичной обмотки

 

Рассматриваемый трансформатор тока в распределительном устрой­стве выполняет одновременно роль проходного изолятора.

При токах, меньших 600 А, применяются многовитковые трансформа­торы тока ТПЛ, у которых первичная обмотка 3 состоит из нескольких витков, количество которых определяется необходимой МДС (рис. 5.6).

Трансформатор тока ТПФ-10 (рис. 5.7) − это проходной трансформатор с фарфоровой изоляцией на номинальное напряжение 10 кВ, который состоит из одного или двух сердечников 1, охватывающих фарфоровые изоляторы 2. Вторичная обмотка 3 (одно- или двухкатушечная) надета на стержень сердечника. Первичная обмотка 4 состоит из нескольких витков круглого изолированного провода или ленточной меди, продетой через отверстия изоляторов. Начало Л1 и конец Л2 первичных обмоток приварены к медным контактным пластинам 5, выведенным наружу через прямоугольные отверстия в тор­цовых крышках 6 трансформатора. На фланце 8 укреплены изоли­рованные колодки 9, на которые через изоляционные втулки выведены начало И1 и конец И2 вторичных обмоток и болт заземления 11. По углам фланца расположены отверстия 10 для крепления трансформатора. Для защиты обмоток трансформатора от механических повреждений служит прямоугольный кожух 7.

 

Рис. 5.6. Трансформатор тока ТПЛ-10 с двумя магнитопроводами:

1 − магнитопровод; 2 − вторич­ная обмотка; 3 − первичная об­мотка;

4 − вывод первичной обмотки; 5 − литой эпоксидный корпус

 

 

Рис. 5.7. Трансформатор тока ТПФ-10

 

Трансформаторы тока ТЗЛ нулевой последовательности с литой изоляцией и ТЗ с хлопчатобумаж­ной служат для питания схем защиты от замыканий на землю в кабельных линиях. В нормальных условиях суммарный магнитный поток этих трансформаторов, вызванный токами, проходящими по каждой фазе кабеля, равен нулю, поэтому во вторичной обмотке трансформатора ток отсутствует. Если произойдет замыкание на землю одной из фаз защищаемой установки или участка сети или нару­шится равномерность загрузки по фазам, суммарный магнитный поток не будет равен нулю и вызовет ток во вторичной обмотке.

Трансформатор ТЗЛ состоит из сердечника с катушками двухсекционной обмотки, надетыми на него и залитыми эпоксидным компаундом, который является изолирующим материалом, защищающим обмотки от механических повреждений. Первичной обмоткой этих трансформаторов служит кабель. Для удобства монтажа трансформаторы нулевой последовательности изготовляют разъемными − ТЗРЛ (рис. 5.8) и ТЗР.

 

 

Рис. 5.8. Трансформатор нулевой последовательности ТЗРЛ

 

Трансформаторы тока ТКБ служат для питания отключающих обмоток приводов и состоят из шихтованного сердечника, на боковых стержнях которого надеты первичная и вторичная обмотки. Начало и конец обмоток выведены на щиток, укрепленный на верхней части магнитопровода. Особенностью трансформаторов тока ТКБ являются быстрое насыщение железа и стабильность вторичного тока. В трансформаторах ТКБ тропического исполнения сердечник с обмотками залит эпоксидным компаундом.

Трансформаторы ТКЛ и ТШЛ с литой изоляцией, заменяющие трансформаторы ТК (катушечные) и ТШ (шинные) с хлопчатобумажной изоляцией, применяются для измерения тока и питания схем защиты в сетях напряжением до 660 В, частотой 50 Гц при температуре от +35 до - 40 °С и выпускаются на токи до 1500 А с классом точности 0,5 и 1. Длительно допустимый ток этих трансформаторов − 110 % номинального, температура обмоток не должна превышать 100 °С, номинальная нагрузка трансформаторов в зависимости от их типа колеблется от 0,1 до 1,2 Ом.

В комплектных распределительных устройствах применяются опорно-проходные трансформаторы тока ТЛМ-10, ТПЛК-10, конструктивно совмещенные с одним из штепсельных разъемов первичной цепи ячейки КРУ.

На большие номинальные первичные токи применяются трансформа­торы тока, у которых роль первичной обмотки выполняет шина, проходя­щая внутри трансформатора. На рис. 5.9 показан трансформатор тока ТШЛ-20 (шинный, с литой изоляцией, на 20 кВ и токи 6000— 18000 А).

 

 

Рис. 5.9. Трансформатор тока ТШЛ-20:

1 − магнитопровод класса 0,5; 2 − магнитопровод класса Р; 3 − литой эпоксидный блок;

4 − корпус; 5 − коробка выводов вторичных обмоток; 6 − токоведушая шина

 

Эти трансформаторы представляют собой кольцеобразный эпоксидный блок с залитым в нем магнитопроводом и вторичными обмотками. Первичной обмоткой является шина токопровода. В изоляционный блок залито экра­нирующее силуминовое кольцо, электрически соединенное с шиной с помощью пружины. Электродинамическая стойкость таких трансформаторов тока определяется устойчивостью шинной конструкции.

В комплектных токопроводах применяются трансформаторы тока ТШВ-15, ТШВ-24.

Для наружной установки выпускаются трансформаторы тока опорного типа в фарфоровом корпусе с бумажно-масляной изоляцией типа ТФЗМ (рис. 5.10). В полом фарфоровом изоляторе, заполненном маслом, располо­жены обмотки и магнитопровод трансформатора.

 

 

Рис. 5.10. Трансформатор тока ТФЗМ:

1 − маслорасширитель; 2 − переключатель первичной обмотки; 3 −ввод Л1; 4 − крышка;

5 − влагопоглотитель; 6 − ввод Л2; 7 − маслоуказатель; 8 − первичная обмотка;

9 − фарфо­ровая покрышка; 10 − магнитопровод с вторичной обмоткой;

11 − масло; 12 − коробка выводов вторичных обмоток; 13 − цоколь

 

Конструктивно первич­ная и вторичная обмотки напоминают два звена цепи (буква З в обозначении типа). Первичная обмотка состоит из двух секций, которые с помощью переключателя 2 могут быть соединены последовательно (по­ложение I) или параллельно (положение II), чем достигается изменение номинального коэффициента трансформации в отношении 1:2. На фарфоровой покрышке установлен металлический маслорасширитель 1, воспри­нимающий колебания уровня масла. Силикагелевый влагопоглотитель 5 предназначен для поглощения влаги наружного воздуха, с которым сооб­щается внутренняя полость маслорасширителя. Обмотки и фарфоровая покрышка крепятся на стальном цоколе 13. Коробка вторичных выводов 12 герметизирована. Снизу к ней крепится кабельная муфта, в которой раз­делан кабель вторичных цепей.

Трансформаторы тока ТФНД на 220 кВ имеют фарфоровый корпус 3, установленный на тележке 4, снабженный металлическим колпаком-расширителем 1 с масломерной трубкой 2. Сбоку на тележке 4 размещена коробка 5 выводов вторичной обмотки.

 

 

Трансформаторы ТФЗМ имеют один магнитопровод с обмоткой клас­са 0,5 и два-три магнитопровода с обмотками для релейной защиты. Чем выше напряжение, тем труднее осуществить изоляцию первичной обмотки, поэтому на напряжение 330 кВ и более изготовляются трансформаторы тока каскадного типа. Наличие двух каскадов трансформации (двух магнитопроводов с обмотками) позволяет выполнить изоляцию обмоток каждой ступени не на полное напряжение, а на половину его.

 


 

Рис.5.11. Опорный трансформатор тока ТФНД-220 наружной установки:

1 – колпак-расширитель; 2 –масломерная трубка; 3 – фарфоровый корпус; 4 – тележка;

5 – коробка выводов вторичной обмотки

 

В установках 330 кВ и более применяются каскадные трансформаторы тока ТФРМ с рымовидной обмоткой, расположенной внутри фарфорового изолятора, заполненного трансформаторным маслом. В таких трансфор­маторах четыре-пять вторичных обмоток на классы точности 0,2; 0,5 и Р. Встроенные трансформаторы тока применяются в установках 35 кВ и более. В вводы высокого напряжения масляных выключателей и силовых трансформаторов встраиваются магнитопроводы со вторичными обмот­ками. Первичной обмоткой является токоведущий стержень ввода. При небольших первичных токах класс точности этих трансформаторов тока 3 или 10. При первичных токах 1000 - 2000 А воз­можна работа в классе точности 0,5. Вторичные обмотки встроенных трансформаторов тока имеют отпайки, позволяющие регулировать коэф­фициент трансформации в соответствии с первичным током. Для встраива­ния в масляные выключатели применяются трансформаторы тока серий ТВ, ТВС, ТВУ. Каждому типу масляного бакового выключателя соответ­ствует определенный тип трансформатора тока, паспортные данные ко­торых приводятся в каталогах выключателей и в справочниках. Для встраивания в силовые трансформаторы или автотрансформаторы приме­няются трансформаторы тока серии ТВТ.

Кроме рассмотренных типов трансформаторов тока выпускаются спе­циальные конструкции для релейных защит: трансформаторы тока нуле­вой последовательности ТНП, ТНПШ, ТЗ, ТЗЛ; быстронасыщающиеся трансформаторы ТКБ; трансформаторы для поперечной дифференциальной защиты генераторов ТШЛО.

Чем выше напряжение, тем труднее изолировать первичную обмотку ВН от вторичной, измерительной обмотки трансформаторов. Каскадные измерительные трансформаторы на 500, 750 и 1150 кВ сложны в изгото­влении и дороги, поэтому взамен их разработаны принципиально новые оптико-электронные трансформаторы (ОЭТ). В них измеряемый сигнал (ток, напряжение) преобразуется в световой поток, который изменяется по определенному закону и передается в приемное устройство, расположенное на заземленном элементе. Затем световой поток преобразуется в электри­ческий сигнал, воспринимаемый измерительными приборами (рис. 5.12).

Таким образом, передающее устройство, находящееся под высоким напря­жением, и приемное устройство, соединенное с землей, связаны между со­бой только пучком света.

Световой поток передается внутри полого изолятора по трубе с зер­кальными стенками или по диэлектрическим стержневым и волоконным световодам, которые изготовляются из специального оптического стекла с изолирующей оболочкой. Передающее устройство ОЭТ может быть основано на различных принципах. В некоторых трансформаторах тока (ОЭТТФ) используется эффект Фарадея (рис. 5.13).

 

 

Рис. 5.12. Структурная схема оптико-электронно­го трансформатора тока:

1 − первичный преобразова­тель; 2 − светодиод; 3 − оп­тическая система; 4 − свето­вод;

5 − фоточувствительный прибор; 6 − усилитель; 7 − измерительный прибор

 

Рис. 5.13. Функциональная схема оптико-электронного трансформатора тока ОЭТТФ:

1 – головка ВН; 2 – токопровод; 3 – поляризатор; 4 – оптически активное вещества;

5 – анализаторы; 6 – изолирующая колонка; 7 – световод; 8 – источник света;

9 – фотоприемник; 10 – основание; 11 – усилитель

 

В основании 10 на по­тенциале земли находятся источник света 8, два фотоприемника 9, вклю­ченных по дифференциальной схеме в цепь усилителя 11, к которому при­соединяются измерительные приборы. В головке ВН 1 размещены две ячейки Фарадея и токопровод измеряемого тока 2. Ячейки Фарадея со­стоят из поляризаторов 3, оптически активного вещества (кварц, тяжелое стекло) 4 и анализаторов 5. Пучок поляризованного света, проходя в опти­чески активном веществе 4, меняет плоскость поляризации на угол, ко­торый зависит от напряженности магнитного поля, т. е. от измеряемого тока. Поворот плоскости поляризации за анализаторами 5 проявляется в виде изменения интенсивности светового потока, падающего на фото­приемник. Световые потоки передаются внутри изолирующей колонки 6 по световодам 7. Фотоприемники преобразуют световой сигнал в электри­ческий, который усиливается в усилителе 11иподается к измерительным приборам. Такие трансформаторы тока универсальны, они предназначены для измерения постоянного, переменного и импульсного тока в установках высокого и сверхвысокого напряжения. Измерительный импульс практиче­ски мгновенно передается к фотоприемникам.

Имеются конструкции трансформаторов тока, в которых передающее устройство состоит из модулятора и светодиода. Световой поток полу­проводникового светодиода зависит от измеряемого тока и его фазы.

Оптико-электронный трансформатор тока с частотной модуляцией (ОЭТТЧ) на 750 кВ и 2000 А имеет четыре оптических канала − один для измерения и три для защиты. Каждый канал связан со своим первичным преобразователем. Канал измерения рассчитан на нормальную работу при токах до 1,2 Iном, при этом погрешность не превышает ±1%. Каналы за­щиты рассчитаны так, что передают без искажения импульсы при токах до 20 Iном.

Оптико-электронные измерительные трансформаторы позволяют кон­тролировать не только ток, но и мощность (полную, активную, реактив­ную) установки, сопротивление на ее зажимах, а также моменты перехода мгновенных значений тока и напряжения через нулевое значение.

ОЭТ целесообразно применять в установках 750 кВ и выше, а также для измерения больших токов (20 − 50 кА) при напряжении 10 − 24 кВ, им­пульсных токов и параметров переходных режимов.

 

 

ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ

ОСНОВНЫЕ ПОНЯТИЯ

 

Трансформаторы напряжения служат для преобразования напряжения установки или участка сети в напряжение, удобное для измерения стандартными приборами, питания защиты, автоматики, телемеханики и сигнализации, а также для изоляции приборов и эксплуатирующего их персонала от высокого напряжения.

Схема включения однофазного трансформатора напряжения показана на рис. 5.14, первичная обмотка включена на напряжение сети U1, а ко вторичной обмотке (напряжение U2) присоединены параллельно катушки из­мерительных приборов и реле.

Для безопасности обслуживания один выход вторичной обмотки заземлен. Трансформатор напряжения в отличие от трансформатора тока работает в режиме, близком к холостому ходу, так как сопротивление параллельных катушек приборов и реле большое, а ток, потребляемый ими, невелик.

Номинальный коэффициент трансформации определяется следующим выражением:

КU= U1НОМ/U2НОМ,

 

где U1НОМ , U2НОМ − номинальные первичное и вторичное напряжения, со­ответственно.

Рассеяние магнитного потока и потери в сердечнике приводят к по­грешности измерения.

Так же как и в трансформаторах тока, вектор вторичного напряжения сдвинут относительно вектора первичного напряжения не точно на угол 180°. Это определяет угловую погрешность. В зависимости от номинальной погрешности различают классы точно­сти 0,2; 0,5; 1; 3.

 

 

Рис. 5.14. Схема включения транс­форматора напряжения:

1 − первичная обмотка; 2 − магнитопровод; 3 − вторичная обмотка

 

Погрешность зависит от конструкции магнитопровода, магнитной про­ницаемости стали и от cos j вторичной нагрузки. В конструкции трансфор­маторов напряжения предусматривается компенсация погрешности по на­пряжению путем некоторого уменьшения числа витков первичной обмот­ки, а также компенсация угловой погрешности за счет специальных компенсирующих обмоток.

Суммарное потребление обмоток измерительных приборов и реле, под­ключенных к вторичной обмотке трансформатора напряжения, не должно превышать номинальную мощность трансформатора напряжения, так как в противном случае это приведет к увеличению погрешностей.

Трансформаторы напряжения подсоединяют к точкам электриче­ской цепи, между которыми необходимо измерить напряжение. Включение трансформаторов напряжения 6−10 кВ производят разъединителями, а защиту электроустановок от их повреждения − предохранителями.

Трансформаторы напряжения выполняют однофазными и трехфазными, двухобмоточными и трехобмоточными, масляными и сухими. К числу сухих относят и трансформаторы с изоляцией из эпоксидных смол.

Масляные трансформаторы напряжения имеют ряд недостатков: необходимость постоянного надзора и периодической замены масла, непригодность к установке в помещениях с повышенной пожарной опасностью и для передвижных установок в условиях бездорожья и тряски; большие габаритные размеры и массу. Трансформаторы напряжения с литой изоляцией из эпоксидных смол лишены указанных недостатков.

Масляные трансформаторы напряжения изготовляют с первичными обмотками на все стандартные напряжения электрических сетей и вторичными на напряжения 100; 100/ и 100/3 В. В схемах электроустановок напряжением 6 − 10 кВ используют однофазные (НОЛ-11-06, ЗНОЛ-09), масляные (НОМ-6 и НОМ-10), трехфазные (НТМК-6 и НТМК-10) и трехфазные пятистержневые (НТМИ-6, НТМИ-10) трансформаторы, имеющие специальную обмотку для контроля изоляции. В пятистержневом трансформаторе два дополнительных стержня магнитопровода позволяют замыкаться магнитному потоку нулевой последовательности при однофазных замыканиях на землю в сети. В устройствах до 1000 В применяют трансформаторы НОС-0,5 и НТС-0,5.

Вторичные обмотки (за исключением дополнительной обмотки НТМИ) трансформаторов напряжения заземляют. Схемы включения трансформаторов показаны на рис. 5.15, а −г.

На рис. 5.15, а показана схема включения однофазного трансформатора для измерения напряжения. Схема включения двух однофазных трансформаторов напряжения для питания обмоток счетчиков, ваттметров представлена на рис. 5.15, б. На рис. 5.15, в представлена схема включения трехфазного двухобмоточного трансформатора для питания обмоток вольтметров, счетчиков, ваттметров. Схема включения трехфазного трехобмоточного трансформатора напряжения показана на рис. 5.15, г. Такая схема включения позволяет осуществлять питание различных приборов измерения и учета от основной обмотки, а от дополнительных обмоток – приборов контроля изоляции и реле защиты от замыканий на землю.

 

 

Рис. 5.15. Схемы включения трансформаторов напряжения:

1 – разъединитель; 2 – предохранитель ПКТ; 3, 4, 5 – трансформаторы

 

 

КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ

 

По конструкции различают трехфазные и однофазные трансформа­торы. Трехфазные трансформаторы напряжения применяются при напря­жении до 18 кВ, однофазные - на любые напряжения. По типу изоляции трансформаторы могут быть сухими, масляными и с литой изоляцией. Обмотки сухих трансформаторов выполняются проводом ПЭЛ, а изоляцией между обмотками служит электрокартон. Такие трансформаторы применяются в установках до 1000 В (НОС-0,5 − трансформатор напряжения однофазный, сухой, на 0,5 кВ).

Трансформаторы напряжения с масляной изоляцией приме­няются на напряжение 6-1150 кВ в закрытых и открытых распредели­тельных устройствах. В этих трансформаторах обмотки и магнитопровод залиты маслом, которое служит для изоляции и охлаждения.

Следует отличать однофазные двухобмоточные трансформаторы НОМ-6, НОМ-10, НОМ-15, НОМ-35 от однофазных трехобмоточных ЗНОМ-15, ЗНОМ-20, ЗНОМ-35.

Схема обмоток первых показана на рис. 5.16, а. Такие трансформаторы имеют два ввода высокого напряжения (ВН) и два ввода низкого напряжения (НН), их можно соединить по схемам от­крытого треугольника, звезды, треугольника.

У трансформаторов второго типа (рис. 5.16,б) один конец обмотки ВН заземлен, единственный ввод ВН расположен на крышке, а вводы НН − на боковой стенке бака. Обмотка ВН рассчитана на фазное напряжение, основная обмотка НН − на 100/ В, дополнительная обмотка − на 100/3 В. Такие трансформаторы называются заземляемыми.

 

а) НОМ-35 б) ЗНОМ-35

 

Рис. 5.16 Трансформаторы напряжения одно­фазные масляные:

1 − ввод ВН; 2 − коробка вводов НН; 3 − бак

 

Трансформаторы типов ЗНОМ-15, ЗНОМ-20, ЗНОМ-24 устанавливают­ся в комплектных шинопроводах мощных генераторов. Для уменьшения потерь от намагничивания их баки выполняются из немагнитной стали. На рис.4.17 показана установка такого трансформатора в комплектном токопроводе.

Трансформатор с помощью ножевого контакта 3, располо­женного на вводе ВН, присоединяется к пружинящим контактам, закре­пленным на токопроводе 1, закрытом экраном 2. К патрубку 5 со смот­ровыми люками 4 болтами 6 прикреплена крышка трансформатора. Таким образом, ввод ВН трансформатора находится в закрытом отростке экрана токопровода. Зажимы обмоток НН выведены на боковую стенку бака и за­крываются отдельным кожухом.

 

Рис. 5.17. Установка трансформатора напряжения ЗНОМ-20

в комплектном токопроводе:

1 – токопровод; 2 – экран; 3 – ножевой контакт; 4 – смотровой люк;

5 – патрубок; 6 – болты

 

Трехфазные масляные трансформаторы типа НТМИ имеют пятистержневой магнитопровод и три обмотки, они предназна­чены для присоединения приборов контроля изоляции.

Все шире применяются транс­форматоры напряжения с литой изоляцией. Заземляе­мые трансформаторы напряжения серии ЗНОЛ.06 имеют пять испол­нений по номинальному напря­жению: 6, 10, 15, 20 и 24 кВ. Магнитопровод в них ленточный, разрезной, С-образный, что позволило увеличить класс точности до 0,2. Такие трансформаторы имеют небольшую массу, могут устанавливаться в любом положении, пожаробезопасны.Трансформаторы ЗНОЛ.06 предназначены для установ­ки в КРУ и комплектных токопроводах вместо масляных трансфор­маторов НТМИ и ЗНОМ, а трансформаторы серии НОЛ.08 − для замены НОМ-6 и НОМ-10.

На рис. 5.18 показан однофазный двухобмоточный трансформатор с не­заземленными выводами типа НОЛ-08-6 на 6 кВ. Трансформатор предста­вляет собой литой блок, в который залиты обмотки и магнитопровод. Выводы первичной обмотки А, X, выводы вторичной обмотки а, х расположены на переднем торце трансформатора и закрыты крышкой.

В установках 110 кВ и выше применяются трансформаторы на­пряжения каскадного типа НКФ. В этих трансформаторах обмотка ВН равномерно распределяется по нескольким магнитопроводам, благодаря чему облегчается ее изоляция. Трансформатор НКФ-110 (рис. 5.19) имеет двухстержневой магнитопровод, на каждом стержне расположена обмотка ВН, рассчитанная на Uф/2. Так как общая точка обмотки ВН соединена с магнитопроводом, то он по отношению к земле находится под потенциалом Uф/2. Обмотки ВН изолируются от магнитопровода также на Uф/2. Обмотки НН (основная и дополнительная) намотаны на нижнем стержне магнитопровода. Для равномерного распре­деления нагрузки по обмоткам ВН служит обмотка связи П. Такой блок, состоящий из магнитопровода и обмоток, помещается в фарфоровую ру­башку и заливается маслом.

 

 

Рис. 5.18. Трансформатор напряжения НОЛ-08-6

 

 

б)
а)

 

Рис. 5.19. Трансфор­матор напряжения НКФ-110: а − схема; б − конструк­ция;

1 − ввод высокого напряжения; 2 − маслорасширитель; 3− фарфо­ровая рубашка;

4 − ос­нование; 5 − коробка вво­дов НН

 

Трансформаторы напряжения НДЕ на 220 кВ состоят из двух блоков, установленных один над другим, т. е. имеют два магнитопровода и четыре ступени каскадной обмотки ВН с изоляцией на Uф/4. На рис. 5.20 представлены схема и установка трансформатора НДЕ-500-72.

 

а) схема
  б) установка НДЕ-500-72

 

Рис. 5.20. Трансформатор НДЕ:

1 – делитель напряжения; 2 – разъединитель; 3 – трансформатор напряжения

и дроссель; 4 – заградитель высокочастотный; 5 – разрядник; 6 – привод

Трансформаторы на­пряжения НКФ-330 и НКФ-500 соответственно имеют три и четыре блока, то есть шесть и восемь ступеней обмотки ВН. Чем больше каскадов обмотки, тем больше их активное и реактивное сопротивление, возрастают погрешности, и поэтому трансформаторы НКФ-330, НКФ-500 выпускаются только в классах точности 1 и 3. Кроме того, чем выше напряжение, тем сложнее конструкция трансформаторов напряжения, поэтому в установках 500 кВ и выше применяются трансфор­маторные устройства с емкостным отбором мощности, присоединенные к конденсаторам высокочастотной связи С1 с помощью конденсатора от­бора мощности С2 (рис. 5.20, а). Напряжение, снимаемое с С2 (10−15 кВ), подается на трансформатор НДЕ, имеющий две вторичные обмотки, ко­торые соединяются по такой же схеме, как и у трансформаторов НКФ или ЗНОМ.

Для увеличения точности работы в цепь его первичной обмотки включен дроссель L, с помощью которого контур отбора напряжения на­страивается в резонанс с конденсатором С2. Дроссель L и трансформатор TV встраиваются в общий бак и заливаются маслом. Заградитель 3В не пропускает токи высокой частоты в трансформатор напряжения. Фильтр присоединения Z предназначен для подключения высокочастотных постов защиты. Такое устройство получило название емкостного трансформатора напряжения НДЕ. На рис. 5.20, б показана установка НДЕ-500-72.

При надлежащем выборе всех элементов и настройке схемы устройство НДЕ может быть выполнено на класс точности 0,5 и выше. Для установок 750 и 1150 кВ применяются трансформаторы НДЕ-750 и НДЕ-1150.

 

Контрольные вопросы

 

1. Объясните назначение измерительных трансформаторов тока. Изобразите схемы

их включения.

2. Изложите основные технические характеристики измерительных трансформаторов

тока.

3. Какие типы измерительных трансформаторов тока для внутренней установки

применяются в настоящее время?

4. Расскажите об устройстве и принципе работы трансформатора тока для

внутренней установки на примере ТПОЛ-20.

5. Расскажите об устройстве и принципе работы трансформатора тока ТПЛ-10.

6. Расскажите об устройстве трансформатора тока ТЗЛ и его особенностях.

7. Расскажите об устройстве и принципе работы трансформатора тока

для наружной установки на примере ТФЗМ.

8. Объясните устройство и принцип работы оптико-электронного трансформатора

тока ОЭТТФ.

9. Каково назначение измерительных трансформаторов напряжения?

Нарисуйте схемы включения трансформаторов.

10. Изложите основные технические характеристики измерительных трансформаторов

напряжения.

11. Какие типы трансформаторов напряжения для внутренней установки

применяются в настоящее время?

12. Объясните устройство и принцип работы измерительного трансформатора

напряжения ЗНОМ.

13. Расскажите об устройстве и принципе работы измерительного трансформатора

напряжения НТМИ.

14. Расскажите об устройстве и принципе работы измерительного трансформатора

НКФ-110.