Гиппокамп

Наиболее полифункциональными образованиями лимбической системы являются гиппокамп и миндалевидные тела. Физиология этих структур наиболее изучена.

Гиппокамп

 

Гиппокамп (hippocampus) расположен в глубине височных долей мозга и является основной структурой лимбической системы. Мор­фологически гиппокамп представлен стереотипно повторяющимися модулями, связанными между собой и с другими структурами.

Модульное строение обусловливает способность гиппокампа ге­нерировать высокоамплитудную ритмическую активность. Связь мо­дулей создает условие циркулирования активности в гиппокампе при обучении. При этом возрастает амплитуда синаптических по­тенциалов, увеличиваются нейросекреция клеток гиппокампа, число шипиков на дендритах его нейронов, что свидетельствует о переходе потенциальных синапсов в активные. Многочисленные связи гип­покампа со структурами как лимбической системы, так и других отделов мозга определяют его многофункциональность.

Выраженными и специфическими являются электрические про­цессы в гиппокампе. Активность здесь чаще всего характеризуется быстрыми бета-ритмами (14—30 в секунду) и медленными тета-ритмами (4—7 в секунду).

Если с помощью фармакологических методов в новой коре ос­лабить десинхронизацию на новое раздражение, то в гиппокампе затрудняется возникновение тета-ритма. Раздражение ретикулярной формации ствола мозга усиливает выраженность тета-ритма в гип­покампе и высокочастотных ритмов в новой коре.

Значение тета-ритма заключается в том, что он отражает реак­цию гиппокампа, а тем самым — его участие в ориентировочном рефлексе, реакциях настороженности, повышения внимания, в ди­намике обучения. Тета-ритм в гиппокампе наблюдается при высоком уровне эмоционального напряжения — страхе, агрессии, голоде, жажде. Вызванная активность в гиппокампе возникает на раздра­жение различных рецепторов и любой из структур лимбической системы. Разносенсорные проекционные зоны в гиппокампе пере­крываются. Это обусловлено тем, что большинство нейронов гиппокампа характеризуется полисенсорностью, т. е. способностью ре­агировать на световые, звуковые и другие виды раздражений.

Нейроны гиппокампа отличаются выраженной фоновой актив­ностью. В ответ на сенсорное раздражение реагирует до 60% ней­ронов гиппокампа. Особенность строения гиппокампа, взаимосвя­занные модули обусловливают цикл генерирования возбуждения в нем, что выражается в длительной реакции (до 12 с) нейронов на однократный короткий стимул.

Повреждение гиппокампа у человека нарушает память на собы­тия, близкие к моменту повреждения (ретроантероградная амнезия). Нарушаются запоминание, обработка новой информации, различие пространственных сигналов. Повреждение гиппокампа ведет к сни­жению эмоциональности, инициативности, замедлению скорости ос­новных нервных процессов, повышаются пороги вызова эмоциональ­ных реакций.

Миндалевидное тело

 

Миндалевидное тело (corpus amygdoloideum), миндалина — подкорковая структура лимбической системы, расположенная в глубине височной доли мозга. Нейроны миндалины разнообразны по форме, функциям и нейрохимическим процессам в них. Функции минда­лины связаны с обеспечением оборонительного поведения, вегета­тивными, двигательными, эмоциональными реакциями, мотивацией условнорефлекторного поведения.

Электрическая активность миндалин характеризуется разноамплитудными и разночастотными колебаниями. Фоновые ритмы могут коррелировать с ритмом дыхания, сердечных сокращений.

Миндалины реагируют многими своими ядрами на зрительные, слуховые, интероцептивные, обонятельные, кожные раздражения, причем все эти раздражения вызывают изменение активности любого из ядер миндалины, т. е. ядра миндалины полисенсорны. Реакция ядра на внешние раздражения длится, как правило, до 85 мс, т. е. значительно меньше, чем реакция на подобные же раздражения новой коры.

Нейроны имеют хорошо выраженную спонтанную активность, которая может быть усилена или заторможена сенсорными раздра­жениями. Многие нейроны полимодальны и полисенсорны и акти­вируются синхронно с тета-ритмом.

Раздражение ядер миндалевидного тела создает выраженный парасимпатический эффект на деятельность сердечно-сосудистой, дыхательной систем, приводит к понижению (редко к повышению) кровяного давления, урежению сердечного ритма, нарушению про­ведения возбуждения по проводящей системе сердца, возникновению аритмий и экстрасистолий. При этом сосудистый тонус может не изменяться.

Урежение ритма сокращений сердца при воздействии на минда­лины отличается длительным скрытым периодом и имеет длительное последействие.

Раздражение ядер миндалины вызывает угнетение дыхания, иног­да кашлевую реакцию.

При искусственной активации миндалины появляются реакции принюхивания, облизывания, жевания, глотания, саливации, изме­нения перистальтики тонкой кишки, причем эффекты наступают с большим латентным периодом (до 30—45 с после раздражения). Стимуляция миндалин на фоне активных сокращений желудка или кишечника тормозит эти сокращения.

Разнообразные эффекты раздражения миндалин обусловлены их связью с гипоталамусом, который регулирует работу внутренних органов.

Повреждение миндалины у животных снижает адекватную под­готовку автономной нервной системы к организации и реализации поведенческих реакций, приводит к гиперсексуальности, исчезно­вению страха, успокоению, неспособности к ярости и агрессии. Животные становятся доверчивыми. Например, обезьяны с повреж­денной миндалиной спокойно подходят к гадюке, вызывавшей ранее у них ужас, бегство. Видимо, в случае повреждения миндалины исчезают некоторые врожденные безусловные рефлексы, реализую­щие память об опасности.

 

Гипоталамус

 

Гипоталамус (hypothalamus, подбугорье) — структура промежуточного мозга, входящая в лимбическую систему, организующая эмоциональные, поведенческие, гомеостатические реакции организ­ма.

Морфофункциональная организация. Гипоталамус имеет боль­шое число нервных связей с корой большого мозга, подкорковыми узлами, зрительным бугром, средним мозгом, мостом, продолговатым и спинным мозгом.

В состав гипоталамуса входят серый бугор, воронка с нейрогипофизом и сосцевидные тела. Морфологически в нейронных структурах гипоталамуса можно выделить около 50 пар ядер, имеющих свою спе­цифическую функцию. Топографически эти ядра можно объединить в 5 групп: 1) преоптическая группа имеет выраженные связи с конеч­ным мозгом и делится на медиальное и латеральное предоптические ядра; 2) передняя группа, в состав которой входят супраоптическое, паравентрикулярные ядра; 3) средняя группа состоит из нижнемедиального и верхнемедиального ядер; 4) наружная группа включает в себя латеральное гипоталамическое поле и серобугорные ядра; 5) за­дняя группа сформирована из медиальных и латеральных ядер сосце­видных тел и заднего гипоталамического ядра.

Ядра гипоталамуса имеют мощное кровоснабжение, подтвержде­нием чему служит тот факт, что ряд ядер гипоталамуса обладает изолированным дублирующим кровоснабжением из сосудов артери­ального круга большого мозга (виллизиев круг). На 1 мм2 площади гипоталамуса приходится до 2600 капилляров, в то время как на той же площади V слоя предцентральной извилины (моторной коры) их 440, в гиппокампе — 350, в бледном шаре — 550, в затылочной доле коры большого мозга (зрительной коре) — 900. Капилляры гипоталамуса высокопроницаемы для крупномолекулярных белко­вых соединений, к которым относятся нуклеопротеиды, что объясняет высокую чувствительность гипоталамуса к нейровирусным инфек­циям, интоксикациям, гуморальным сдвигам.

У человека гипоталамус окончательно созревает к возрасту 13— 14 лет, когда заканчивается формирование гипоталамо-гипофизарных нейросекреторных связей. За счет мощных афферентных связей с обонятельным мозгом, базальными ганглиями, таламусом, гиппокампом, корой большого мозга гипоталамус получает информацию о состоянии практически всех структур мозга. В то же время ги­поталамус посылает информацию к таламусу, ретикулярной фор­мации, вегетативным центрам ствола мозга и спинного мозга.

Нейроны гипоталамуса имеют особенности, которые и определяют специфику функций самого гипоталамуса. К этим особенностям относятся чувствительность нейронов к составу омывающей их кро­ви, отсутствие гематоэнцефалического барьера между нейронами и кровью, способность нейронов к нейросекреции пептидов, нейромедиаторов и др.

Роль гипоталамуса в регуляции вегетативных функций. Влияние на симпатическую и парасимпатическую регуляцию позволяет ги­поталамусу воздействовать на вегетативные функции организма гу­моральным и нервным путями.

Раздражение ядер передней группы сопровождается парасимпа­тическими эффектами. Раздражение ядер задней группы вызывает симпатические эффекты в работе органов. Стимуляция ядер средней группы приводит к снижению влияний симпатического отдела ав­тономной нервной системы. Указанное распределение функций ги­поталамуса не абсолютно. Все структуры гипоталамуса способны в разной степени вызывать симпатические и парасимпатические эф­фекты. Следовательно, между структурами гипоталамуса существу­ют функциональные взаимодополняющие, взаимокомпенсирующие отношения.

В целом за счет большого количества связей, полифункционально­сти структур гипоталамус выполняет интегрирующую функцию веге­тативной, соматической и эндокринной регуляции, что проявляется и в организации его ядрами ряда конкретных функций. Так, в гипота­ламусе располагаются центры гомеостаза, теплорегуляции, голода и насыщения, жажды и ее удовлетворения, полового поведения, страха, ярости, регуляции цикла бодрствование—сон. Все эти центры реали­зуют свои функции путем активации или торможеиия автономного (вегетативного) отдела нервной системы, эндокринной системы, структур ствола и переднего мозга. Нейроны ядер передней группы гипоталамуса продуцируют вазопрессин, или антидиуретический гор­мон (АДГ), окситоцин и другие пептиды, которые по аксонам попада­ют в заднюю долю гипофиза — нейрогипофиз.

Нейроны ядер срединной группы гипоталамуса продуцируют так называемые рилизинг-факторы (либерины) и ингибирующие факторы (статины), которые регулируют активность передней доли гипофиза — аденогипофиз. В нем образуются такие вещества, как соматотропный, тиреотропный и другие гормоны (см. раздел 5.2.2). Наличие такого набора пептидов в структурах гипоталамуса свиде­тельствует о присущей им нейросекреторной функции.

Они также обладают детектирующей функцией: реагируют на изменения температуры крови, электролитного состава и осмотиче­ского давления плазмы, количества и состав гормонов крови.

Олдс (Olds) описал поведение крыс, которым вживляли электроды в ядра гипоталамуса и давали возможность самостоятельно стимули­ровать эти ядра. Оказалось, что стимуляция некоторых ядер приводи­ла к негативной реакции. Животные после однократной самостимуля­ции больше не подходили к педали, замыкающей стимулирующий ток. При самостимуляции других ядер животные нажимали на педаль часами, не обращая внимания на пищу, воду и др.

Исследования Дельгадо (Delgado) во время хирургических опе­раций показали, что у человека раздражение аналогичных участков вызывало эйфорию, эротические переживания. В клинике показано также, что патологические процессы в гипоталамусе могут сопро­вождаться ускорением полового созревания, нарушением менстру­ального цикла, половой функции.

Раздражение передних отделов гипоталамуса может вызывать у животных пассивно-оборонительную реакцию, ярость страх, а раздражение заднего гипоталамуса вызывает активную агрессию.

Раздражение заднего гипоталамуса приводит к экзофтальму, расширению зрачков, повышению кровяного давления, сужению про­света артериальных сосудов, сокращениям желчного, мочевого пу­зырей. Могут возникать взрывы ярости с описанными симпатиче­скими проявлениями. Уколы в области гипоталамуса вызывают глюкозурию, полиурию. В ряде случаев раздражение вызывало на­рушение теплорегуляции: животные становились пойкилотермными, у них не возникало лихорадочное состояние.

Гипоталамус является также центром регуляции цикла бодрство­вание — сон. При этом задний гипоталамус активизирует бодрствова­ние, стимуляция переднего вызывает сон. Повреждение заднего гипо­таламуса может вызвать так называемый летаргический сон.

Особое место в функциях гипоталамуса занимает регуляция деятельности гипофиза.

В гипоталамусе и гипофизе образуются также нейрорегуляторные пептиды — энкефалины, эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса и т. д.