IV.З. СОХРАНЕНИЕ ИНФОРМАЦИИ ОТ ПОКОЛЕНИЯ К ПОКОЛЕНИЮ

При размножении зигота, образовавшаяся в результате слияния гамет, дает начало миллионам и миллиардам клеток тела. Каждая исходная молекула ДНК дает начало двум новым молекулам РНК, с сохранением в неизменном виде всех особенностей исходной молекулы. Процесс удвоения ДНК, происходящий во вре­мя синтетической (5) стадии интерфазы, носит название репли­кации. Во время репликации информация, закодированная в пос­ледовательности нуклеиновых оснований молекулы родительской ДНК, передается с максимальной точностью дочерним ДНК. Вкрат­це рассмотрим схему репликации.

В 1956 г. А. Корнберг выделил фермент, который был способен связывать свободные нуклеотиды друг с другом, и дал ему назва­ние ДНК-полимераза.В последующие годы были обнаружены и другие виды полимераз, также способных удлинять цепи ДНК в направлении 5'®3', последовательно прибавляя по одному нуклеотиду к 3'-ОН-конпу цепи. ДНК-полимераза может строить лишь одну цепь молекулы ДНК. Обнаружение ДНК-полимеразы стало первым практическим шагом анализа биохимических механизмов репликации.

Способ репликации, характерный для всех эукариот, в том числе и человека, известен под названием полуконсервативной реплика­ции(рис. IV.10). В начале процесса репликации особый фермент — хеликаза (от греч. helix — спираль) — расплетает родительскую ДНК на две нити, каждая из которых служит матрицей, определяющей последовательность новой, комплементарной цепи ДНК. При полу­консервативной репликации дочерние клетки первого поколения получают только одну из нитей ДНК родительской клетки. Вторая нить синтезируется заново, при этом она комплементарна роди­тельской цепи. Процесс повторяется при образовании дочерних кле­ток второго поколения. Таким образом, только две из четырех до­черних клеток второго поколения содержат по одной цепи исход­ной родительской ДНК.

Поскольку ДНК-полимераза катализирует репликацию только в одном направлении (5'®3'), непрерывно достраивается только одна новая цепь молекулы ДНК (смысловая). Вторая цепь (антисмысловая) синтезируется другой ДНК-полимеразой, движущейся в об­ратном направлении, в виде коротких участков ДНК. Затем эти фрагменты ДНК связываются в единую цепь ферментом ДНК-лигазой.

Таким образом, репликация ДНК обеспечивает высочайшую точность воспроизведения генетической информации, заключенной в последовательности оснований ДНК и тем самым реализует основные функции ДНК - сохранение генетической информации и точное ее воспроизведение в ряду поколений. Сразу после открытия структуры двойной спирали ДНК стало очевидно, что сама молекула ДНК не может служить матрицей для синтеза белка. Этот вывод логично вытекал из того, что почти вся ДНК находится в хромосомах, расположенных в ядре, в то время как синтез белка осуществляется в цитоплазме клетки. Та­ким образом, генетическая информация, зашифрованная в структуре ДНК, должна передаваться иной молекуле, способной транспортироваться в цитоплазму и

участвовать в синтезе белка. Такой молекулой оказалась мРНК, а процесс образования мРНК полу­чил название транскрипции.

Транскрипция— это процесс переноса генетической информа­ции от ДНК к РНК. Все виды РНК (мРНК, тРНК, рРНК и гяРНК) синтезируются в соответствии с последовательностью нуклеотидов в молекуле ДНК, служащей для них матрицей. Процесс транскрищии осуществляется при участии трех ДНК-зависимых РНК-толимераз. Полимераза находится в ядрышках, где катализирует синтез рРНК. Полимеразы II и III находятся в кариоплазме, где полимераза II контролирует синтез первичного транскрипта мРНК, а полимераза III участвует в синтезе тРНК.

Процесс транскрипции осуществляется следующим образом. РНК-полимераза, прикрепляясь к началу участка ДНК, расплетают двойную спираль. Перемещаясь вдоль одной из нитей, она последовательно выстраивает комплементарную нить РНК. По мере передвижения РНК-полимеразы растущая нить РНК отходит от матрицы ДНК, и двойная спираль ДНК позади фермента восста­навливается. Когда РНК-полимераза достигает специфического участка ДНК, называемого терминационным, рост цепи РНК прекращается, и происходит отделение ее от ДНК. Синтезированная нить РНК содержит информацию, точно переписанную с соответствующего участка ДНК.

Процесс транскрипции, как и репликации, осуществляется при строгом соблюдении правила комплементарности с одним изме­рением: напротив аденина молекулы ДНК при транскрипции в молекулу РНК встраивается урацил (рис. IV.11).

После того как заканчивается транскрипция, все виды РНК претерпевают определенные изменения, в результате которых ониприобретают возможность выполнять специфические для каждой из них функции. Подобное созревание РНК носит название процессинга.

Матричная, или информационная, РНК (мРНК).На долю мРНК приходится примерно 3-5% всей содержащейся в клетке РНК. Молекулы мРНК образуются из больших молекул-предшествен­ников — гяРНК. Изменения гяРНК связаны с модификацией по 5'- и 3'-концам и сплайсингом. Изменение 5'-конца приводит к об­разованию специфической последовательности, называемой кэп-структурой. Изменение 3'-конца заключается в присоединении к нему 120-150 остатков аденина (роly А). Сплайсинг— это процесс удаления участков молекулы РНК, соответствующих интронньш последовательностям ДНК.

Зрелая мРНК выходит в цитоплазму и становится матрицей для синтеза белка, т.е. переносит информацию о структуре белка от ДНК к рибосомам.

Рибосомальная РНК (рРНК) составляет более 80% всей РНК клетки. Она кодируется генами, расположенными в так называ­емых ядрышковых организаторах некоторых акроцентрических хро­мосом.

Последовательность нуклеотидов в рРНК сходна у всех орга­низмов. Вся рРНК находится в цитоплазме, где она образует слож­ный комплекс с белками, формируя рибосому. На рибосомах ин­формация, зашифрованная в структуре мРНК, переводится (транс­лируется) в аминокислотную последовательность, т.е. происходит синтез белка.

На долю транспортных РНК (тРНК) приходится примерно 15 % всей клеточной РНК. Поскольку большинство аминокислот коди­руются несколькими триплетами, число различных тРНК значи­тельно больше числа аминокислот (больше 20). Все молекулы тРНК имеют сходную структуру, напоминающую клеверный лист (рис. IV.12). На 5'-конце молекулы всегда находится гуанин, а на 3'-конце — последовательность ЦЦА; тРНК узнает соответствующий кодон в мРНК и переносит нужную аминокислоту в растущей полипеп-

тидной цепи. Узнавание кодона мРНК осуществляется с помощью антикодона транспортной РНК — специфичной для каж­дой аминокислоты последовательности трех оснований тРНК, ком­плементарных данному кодону мРНК. Аминокислота присоединя-ется к 3'-концу тРНК с помощью фермента аминоацил-тРНК-синтетазы.

Таким образом, тРНК играют связующую роль между мРНК и белком.