Принцип минимакса (осторожности).
Предположим, что противник всеведущ и угадывает все ходы! Первый игрок предполагает, что второй все знает и для хода i первого игрока выберет j(i):
aij(i) £ aij," j = 1,…, n. Обозначим Тогда лучшей
стратегией для первого игрока является выбор i0 такой, что
Величину a назовем нижней ценой игры в чистых стратегиях.
Второй игрок из соображений осторожности считает, что первый " j выберет i(j) так, что ai(j)j ³ aij, " i, т.е. и выбирает j с минимальным bj, т.е.
.
Величину b назовем верхней ценой игры в чистых стратегиях.
Пример 1. a = –1, b = +1, a £ b
Пример 2. ,
Лемма. Для любой функции f(x,y), xÎX, yÎY, справедливо неравенство
в предположении, что эти величины существуют.
Доказательство. Введем обозначения:
,
.
Тогда
Теорема. Необходимым и достаточным условием равенства верхней и нижней цен игры в чистых стратегиях является существование седловой точки
в матрице (aij).
Доказательство. Необходимость. Пусть a = b. По определению
т.е. Так как a = b, то , т.е. является седловой точкой.
Достаточность. Пусть седловая точка (i0j0) существует, т.е.
Тогда но по лемме верно обратное, т.е. . Следовательно a = b.