Закон распределения случайных величин. Нормальное распределение. Показательное распределение. Равномерное распределение. Некоторые другие виды распределения.
Непрерывная случайная величина называется распределенной по нормальному закону, если ее плотность распределения имеет вид:
(6.1)
Замечание. Таким образом, нормальное распределение определяется двумя параметрами: а и σ.
График плотности нормального распределения называют нормальной кривой (кривой Гаусса). Выясним, какой вид имеет эта кривая, для чего исследуем функцию (6.1).
1)Область определения этой функции: (-∞, +∞).
2)f(x) > 0 при любом х (следовательно, весь график расположен выше оси Ох).
3) то есть ось Ох служит горизонтальной асимптотой графика при
4) при х = а; при x > a, при x < a. Следовательно, - точка максимума.
5)F(x – a) = f(a – x), то есть график симметричен относительно прямой х = а.
6) при , то есть точки являются точками перегиба.
Примерный вид кривой Гаусса изображен на рис.1.
х
Рис.1.
Найдем вид функции распределения для нормального закона:
(6.2)
Перед нами так называемый «неберущийся» интеграл, который невозможно выразить через элементарные функции. Поэтому для вычисления значений F(x) приходится пользоваться таблицами. Они составлены для случая, когда а = 0, а σ = 1.
Нормальное распределение с параметрами а = 0, σ = 1 называется нормированным, а его функция распределения.