Виды модуляции сигналов.

Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Обычно, преобразование обычно осуществляется с помощью микрофона.

Для передачи сигналов на большие расстояния необходимо, чтобы они обладали большой энергией. Известно, что энергия сигнала пропорциональна четвертой степени его частоты, то есть сигналы с большей частотой обладают большей энергией. В практике часто сигналы, несущие в себе информацию, например, речевые сигналы, имеют низкую частоту колебаний и поэтому, чтобы передать их на большое расстояние необходимо частоту информационных сигналов повышать.

Таким образом для передачи электромагнитных колебаний необходим источник электромагнитных колебаний значительной мощности и частотного диапазона, исходя из условий распространения радиоволн.


Итак, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком?

Рассмотрим гармоническое колебание, которое имеет частоту ω достаточную для распространения на большие расстояния и изменяется по закону:

Наложить информацию на это колебание можно путем медленного, по сравнению с периодом, изменения его амплитуды Um, частоты ω или фазы φ. Такой процесс называется модуляцией.

В зависимости от того, какой параметр изменяют, различают амплитудную (АМ), частотную (ЧМ) и фазовую (ФМ) модуляцию.

Амплитудно-модулированный сигнал получается путем перемножения двух сигналов. Один содержит информацию, а другой является несущим. Пусть сигнал информации, (рис.3.1.) и несущее колебание (рис.3.2.) изменяются в соответствии со следующими выражениями:

 

U1(t) = U0 + U1m cosΩt,

U2(t) = U2m cos𝛚t,

где U0 – постоянная составляющая сигнала, U1mи U2m – амплитуды информационного сигнала и несущего колебания, Ω, ω - частота информационного сигнала и несущего колебания.

Рис. 3.1. Информационный сигнал.

Рис. 3.2. Несущее колебание.

Перемножим эти сигналы:

Введем обозначения:

где Um - амплитуда промодулированного сигнала, М – коэффициент модуляции.

С учетом введенных обозначений, получим выражение для амплитудно – модулированного сигнала в следующем виде:

Вид амплитудно-модулированного сигнала показан на рис. 3.3, а его спектр на рис. 3.4.

Рис. 3.3. Амплитудно-модулированный сигнал.

Таким образом, спектр радиочастотного колебания при амплитудной модуляции гармоническим колебанием состоит из трех составляющих: нижней боковой, несущей и верхней боковой гармоник. Видно, что амплитуды боковых составляющих зависят от коэффициента модуляции М.

 

Рис.3.4. Спектр амплитудно – модулированного сигнала.

Вид амплитудно-модулированного сигнала и его спектра, изображенные на рис. 3.3 и 3.4. справедлив для случая, когда модуляция производится однотональным сигналом частотой Ω. На практике чаще используют модуляцию несущих колебаний речевым сигналом, который занимает определенный спектр частот ΔΩ. В этом случае вместо двух боковых частот ( 𝛚-Ω) и( 𝛚+Ω) имеют место два боковых спектра частот ( 𝛚-ΔΩ) и ( 𝛚+ΔΩ), которые называются верхней и нижней боковой полосой частот – ВБ и НБ. (рис.3.5)

Рис.3.5

Для получения однополосного амплитудно – модулированного сигнала необходимо подавить сигнал несущий частоты и одной из боковых полос.

Существует два метода получения сигнала с одной боковой полосой (ОБП):

1. Метод фильтрации.

.

2. Метод фазирования

При этом следует иметь в виду два обстоятельства:

- спектр ВБ и НБ оказываются сдвинуты относительно исходного спектра речевого сигнала ΔΩ на величину несущей частоты;

- спектр НБ оказывается инверсным относительно исходного спектра речевого сигнала.

Частотно-модулированный сигнал - это колебание, у которого мгновенная частота изменяется по закону модулирующего сигнала. Пусть модулирующий сигнал и несущее колебание изменяется, как показано на рис. 3.6, 3.7.

Рис.3.6. Модулирующий сигнал.

Рис.3.7. Несущий сигнал.

Тогда мгновенная частота при частотной модуляции равна:

здесь Δω - девиация (отклонение) частоты под действием модулирующего сигнала, это отклонение в принципе пропорционально амплитуде модулирующего колебания.

Уравнение частотно-модулированное колебания запишется в следующем виде:

где - есть индекс частотной модуляции. Вид частотно – модулированного сигнала показан на рис. 3.8.

Рис. 3.8. Частотно – модулированный сигнал.

Частотно – модулированный сигнал имеет дискретный спектр рис. 3.9. с гармониками на частотах (ω0± nΩ), где n=1, 2, 3, 4, 5…

Рис. 3.9. Спектр частотно – модулированного сигнала.

Вид спектра модулированного колебания зависит от индекса частотной модуляции m, теоретически спектр бесконечен, но на практике он ограничивается двумя - тремя составляющими, так как амплитуды гармоник высших порядков интенсивно убывают. Фазомодулированным колебанием называется колебание, у которого фаза изменяется по закону модулирующего сигнала. Выражение, описывающее такое колебание, имеет вид:

.Частотно-модулированное колебание является в то же время и фазомодулированным. Иногда оба вида модуляции называют угловой модуляцией. Однако при частотной модуляции изменение частоты, а не фазы совпадает с законом изменения модулирующего сигнала. Кроме того, при частотной модуляции индекс модуляции обратно пропорционален модулирующей частоте, тогда как при фазовой модуляции такой зависимости нет.

Когда колебание промодулировано гармоническим сигналом, отличить частотную модуляцию от фазовой можно, только сравнив изменения мгновенной фазы модулированного колебания с законом изменения модулирующего напряжения.

Все три рассмотренных способа модуляции несущего сигнала гармоническим информационным сигналом пригодны и для передачи дискретных сигналов. Такой вид модуляции называется манипуляцией. Источником информации манипулирующих сигналов служат телеграфный ключ, датчик кода Морзе, телеграфная буквопечатающая аппаратура, аппаратура передачи данных и быстродействия.

Принцип амплитудной манипуляции при однополюсном телеграфировании поясняется рис. 3.10.

 
 

 


Технические способы формирования сигналов АТ чрезвычайно просты. Передатчик должен излучать высокочастотные колебания при нажатом ключе, а в момент телеграфной паузы (ключ не нажат) излучение должно отсутствовать.

Спектр АТ радиосигнала носит дискретный характер и показан на рис. 3.11. На этом рисунке Fт = Vт/2 – основная частота телеграфирования, где Vт – скорость телеграфирования в бодах.

 

Рис. 3.11. Спектр АТ сигнала

Для нормального приема радиосигнала по каналу должны быть переданы составляющие спектра сигнала в полосе частот 6Fт = 3Vт или в полосе 10Fт = 5Vт (радиоканал с замираниями). Таким образом, ширина спектра АТ радиосигнала напрямую зависит от скорости передачи информации и составит ΔFАТ = (3...5)Vт.

Так как при слуховой работе телеграфными радиосигналами АТ обеспечивается скорость до 15…20 бод, то ширина спектра такого сигнала составит 45…60 Гц. Из всех телеграфных сигналов радиосигнал с амплитудной манипуляцией имеет самый узкий спектр.

При частотном управлении колебаниями отрицательной посылке (передаче "0") соответствует работа передатчика на частоте fБ, а положительной посылке (передаче "1") – работа на частоте fВ, причем fБ < fВ (рис. 3.11).

Рис. 3.12. Принцип частотного телеграфирования

Разность частот fВ – fБ называют частотным сдвигом Δfcдв (рис.3.13). Радиосигналы ЧТ обозначаются следующим образом: ЧТ-125, ЧТ-200, ЧТ-250 и т. д. или F1-125, F1-200, F1-250 и т. д. Число, записанное после дефиса, является значением частотного сдвига в герцах.

Рис.3.13. Взаимное расположение сигналов на оси частот при ЧТ

Спектр радиосигналов ЧТ зависит как от скорости телеграфирования, так и от частотного сдвига, а именно: чем больше скорость телеграфирования Vт (в бодах) и чем больше частотный сдвиг, тем шире спектр радиосигнала. Ширина спектра радиосигналов ЧТ может быть определена по следующей приближенной формуле:

ΔFчт = (3…5)Vт + Δfcдв.

Существующая техника радиосвязи предусматривает использование и двухканального частотного телеграфирования (ДЧТ или F6), при котором обеспечивается

одновременная работа по двум телеграфным каналам. Каждому из 4-х возможных сочетаний первичных посылок в каналах соответствует определенная частота радиосигнала: fА, fБ, fВ, fГ

(табл. 3.1.), причем fА < fБ < fВ < fГ.

 

Таблица 3.1

1-й ТГканал 2-й ТГканал Частота сигнала Частота сигнала относительно f0
"0" "0" fА
"0" "1" fБ
"1" "0" fВ
"1" "1" fГ

Принцип двойного частотного телеграфирования поясняется на рис.3.14.

Рис.3.14. Принцип двойного частотного телеграфирования

Частотные сдвиги fГ – fВ, fВ – fБ, fБ – fА выбираются равными (рис.3.15). Соответственно частотным сдвигам сигналы обозначаются следующим образом: ДЧТ-250, ДЧТ-500 и т. д. или F6-250, F6-500 и т. д.

 

 

 
 

 


Рис.3.15. Взаимное расположение сигналов на оси частот при ДЧТ

Сигналы ДЧТ увеличивают пропускную способность радиолинии вдвое, однако, обладают более низкой помехоустойчивостью, чем сигналы ЧТ, и могут применяться при достаточно большом превосходстве уровня сигнала над уровнем помех.

Ширина спектра радиосигналов ДЧТ может быть определена по приближенной формуле:

ΔFдчт = (3…5)Vт + 3Δfcдв .

Телеграфные радиосигналы с частотной манипуляцией можно рассматривать как частный случай частотной модуляции с девиацией частоты Δfчт = Δfcдв/2 для ЧТ сигналов и Δfдчт = 3Δfcдв/2 – для ДЧТ сигналов.

При передаче дискретных сигналов методами фазовой манипуляции передаваемая информация содержится в изменении фазы высокочастотного гармонического колебания. Различают два вида фазовой манипуляции: абсолютную фазовую манипуляцию (ФТ) и относительную фазовую манипуляцию (ОФТ).

При ФТ фаза высокочастотных колебаний изменяется на 180° при смене первичных телеграфных посылок, т. е. при переходе от передачи "0" к передаче "1" и наоборот (рис.3.16.). Сигналы ФТ достаточно просто реализуются в передатчике, однако их демодуляция в приемном устройстве связана с большими техническими сложностями. По этой причине ФТ практического применения в настоящее время не находит.

 
 

 


Рис.3.16. Принцип абсолютной фазовой манипуляции

 

При ОФТ информация содержится не в абсолютном изменении (скачке) фазы сигнала в момент смены посылок "0" и "1", а в изменении фазы текущего элемента относительно фазы предшествующего элемента. При передаче символа "0" фаза высокочастотного колебания текущего элемента противоположна фазе предыдущего элемента, а при передаче "1" – та же самая (рис.3.17.). Первый элемент в начале сеанса связи может иметь любую фазу, так как он информацию не несет, а служит лишь для отсчета разности фаз в следующем элементе.

Процесс формирования сигнала с ОФМн можно свести к случаю формирования сигнала с ФМн путем перекодирования передаваемой двоичной последовательности. Алгоритм перекодировки прост: если обозначить как информационный символ, подлежащий передаче на -м единичном элементе сигнала, то перекодированный в соответствии с правилами ОФМн символ определяется следующим рекуррентным соотношением:


Рис.3.17. Принцип относительной фазовой манипуляции

Формирование сигнала ОФТ производится в два этапа. Сначала исходный телеграфный сигнал Uтг перекодируется в такой сигнал, который необходим для осуществления абсолютной фазовой манипуляции. Перекодирование производится специальным устройством, основанным, как правило, на логических элементах. Затем перекодированный первичный сигнал используется для абсолютной фазовой манипуляции, при которой перемена символов ПЭС приводит к изменению фазы высокочастотного колебания на обратную.

Радиосигналы ОФТ широко применяются на высокоскоростных линиях связи. Спектр ОФТ радиосигналов определяется аналогично спектру радиосигналов АТ, т. е. его ширина составит

ΔFофт = (3…5)Vт ,

где Vт – скорость телеграфирования в бодах.