Основная позиционная задача по построению точки пересечения прямой с плоскостью

 

Для решения задачи по построению линии пересечения плоскостей воспользуемся первой позиционной задачей по нахождению точки пересечения прямой и плоскости.

Пусть даны прямая и плоскость общего положения (см. рис. 4). Для того чтобы найти точку пересечения прямой с плоскостью надо:

1.через прямую провести проецирующую плоскость,

2.построить линию пересечения заданной плоскости с проецирующей,

3.найти точку пересечения заданной прямой с построенной линией пересечения плоскостей. Это и есть точка пересечения прямой с плоскостью.

 

Разберем решение этой задачи по частям.

 

1).Через прямую провести проецирующую плоскость – это значит, что прямая лежит в проецирующей плоскости. В свою очередь проецирующая плоскость – это плоскость , которая на одну из плоскостей проекций проецируется в прямую ( см. рис.5 ).Если прямая лежит в этой плоскости, то она также будет проецироваться в эту прямую. Это значит, что для того чтобы на чертеже через прямую провести проецирующую плоскость, надо выполнить запись : проекция прямой совпадает с проекцией плоскости ( см. рис.6 ).

 

.

 

 

 

2). Линией пересечения двух плоскостей есть прямая, которая принадлежит обеим плоскостям. Так как одна плоскость проецирующая, то проекция этой прямой совпадет с проекцией проецирующей плоскости, то есть с прямой, в которую проецируется плоскость.

Недостающая проекция прямой находится из условия принадлежности прямой плоскости

общего положения (см. рис.7).

 

 

 

3).Точка пересечения построенной прямой пересечения плоскостей с заданной прямой и есть точка пересечения прямой с плоскостью (рис.8).