Лазерная резка, газолазерная резка.

 

Большое распространение получает ла­зерная резка, которая обеспечивает малую зону нагрева (0,1 ... 0,2 мм), незначитель­ные ширину реза (0,2 ... 0,8 мм), шерохо­ватость (Rz = 20 ... 35 мкм) и практически неокисленные кромки.

По сравнению с механическими мето­дами лазерное разделение обеспечивает высокую производительность, причем не проис­ходит изнашивание инструмента. По сравнению с физико-химическим разделе­нием (ацетилено-кислородная, плазменная резки) применение лазерного излучения обеспечивает более высокие точность и чистоту реза, т.е. исключает необходи­мость дополнительной механической об­работки.

Лазерные способы разделения мате­риалов можно разделить на три группы: резку, термораскалывание и скрайбирование.

При нагреве некоторых хрупких мате­риалов (керамика, ситалл, стекло и др.) лазерным излучением в их объеме возни­кают значительные напряжения, обуслов­ленные наличием высокого температурно­го градиента. При превышении этими на­пряжениями предела прочности в мате­риале возникают трещины, которые при перемещении лазерного луча по поверх­ности материала следуют за ним с некото­рым запаздыванием. Происходит процесс разделения, называемый термораскалы­ванием.

Процесс скрайбирования занимает про­межуточное положение между резкой и термораскалыванием. Его применяют для разделения полупроводниковых, керамиче­ских и ситалловых подложек на отдельные элементы. Он заключается в нанесении лазерным излучением на поверхность ма­териала дорожек или трещин глубиной 25 ... 350 мкм и последующем разламыва­нии материала механическим воздействи­ем.

Лазерная резка материалов может быть основана на различных процессах, а имен­но: испарении материала, плавлении с удалением расплава из зоны обработки - и на химических реакциях, например, горе­нии или термодеструкции.

При лазерной резке в режиме испаре­ния материал нагревается до температуры кипения, а его удаление происходит под давлением, возникающим в парокапель­ной фазе. Его осуществляют в основном с помощью твердотельных импульсных ла­зеров, при разделении трудно­обрабатываемых материалов, таких как алюминий, керамика, композитные мате­риалы.

Резку в режиме плавления материала и удаления расплава осуществляют с исполь­зованием вспомогательного газа (в основ­ном кислорода) и называют газолазерной резкой (ГЛР). Применение в качестве вспомогательного газа кислорода позволя­ет решить несколько задач.

- снижение отражательной способности поверхности.

- спо­собствует выделению дополнительной тепловой энергии, что приводит к воз­можности применения менее мощных ла­зеров и, соответственно, к снижению стоимости обработки.

- газовая струя просто удаляет расплав из зоны рез­ки.

Для ГЛР используют как непрерывные, так и импульсно-периодические лазеры. В зави­симости от физических свойств материалов и скорости обработки требуемые плотности мощности излучения в зоне лазерного воз­действия составляют 103 ... 105 Вт/см2 для неметаллов и 107... 108 Вт/см2 для металлов.

Для обработки металлов чаще всего применяют твердотельные лазеры, так как их излучение лучше поглощается метал­лическими поверхностями. Для обработки неметаллических материалов, например изготовления декоративных деревянных изделий (мебель, паркет и т.п.), раскроя пачек ткани, бумаги, картона, листовой резины, пластиков, асбоцемента и др. ча­ще всего применяют СO2-лазеры.

С помощью лазерной резки металлов изготовляют мозаичные и декоративные панно (облицовка мебели), детали турбин (промежуточные кольца, диафрагмы), трубопроводы двигателей внутреннего сгорания, шаблоны и сепараторы, пуансо­ны и матрицы, дисковые пилы; раскраи­вают листовой материал в самолете-, судо- и автомобилестроении и других производствах.