Геометрический смысл производной.
Пусть – некоторая кривая, – точка на кривой .
Любая прямая, пересекающая не менее чем в двух точках называется секущей.
Касательной к кривой в точке называется предельное положение секущей , если точка стремится к , двигаясь по кривой.
Из определения очевидно, что если касательная к кривой в точке существует, то она единственная
Рассмотрим кривую y = f(x) (т.е. график функции y = f(x)). Пусть в точке он имеет невертикальную касательную . Ее уравнение: (уравнение прямой, проходящей через точку и имеющую угловой коэффициент k).
По определению углового коэффициента , где – угол наклона прямой к оси .
Пусть – угол наклона секущей к оси , где . Так как – касательная, то при
⇒ ⇒ .