Маркировка инструментальных сталей

Маркировка инструментальных сталей зависит от их типа – углеродистые или легированные.

Если инструментальная сталь углеродистая, то ее обозначают буквой «У» и одной или двумя цифрами, показывающими среднее содержание углерода в десятых процента (ГОСТ 1435–99 «Прутки, полосы и мотки из инструментальной стали. Общие технические условия»). Буква «А» в конце маркировки показывает, что сталь является высококачественной. Например, У10А – углеродистая высококачественная сталь, содержащая в среднем 1,0 % С.

У легированных инструментальных сталей маркировка начинается с одной цифры, показывающей содержание углерода в десятых долях процента. Если сталь содержит около 1,0 % С и более, то цифру опускают. Буквы, указывающие на легирующие элементы, и цифры, показывающие их количественное содержание, соответствуют обозначениям для конструкционных легированных сталей. Например, сталь ХВГ – содержит 0,90 – 1,05 % С; 1,20 – 1,60 % W; 0,80 – 1,10 % Mn. Сталь 6ХВ2С – 0,55 – 0,65 % С; 1,0 – 1,3 % Cr; 2,2 – 2,7 % W; 0,5 – 0,8 % Si.

Между тем, существует ряд исключений из этих правил. Так, хромистые стали, которые идут на изготовление подшипников, маркируют буквами «ШХ» и цифрами, которые показывают содержание основного легирующего элемента (хрома) в десятых долях процента (ГОСТ 810–78). Например, сталь ШХ15 содержит около 1 % С и 1,5 % Cr.

Быстрорежущие стали обозначают буквами «Р» и цифрами, показывающими содержание основного легирующего элемента – вольфрама. Во всех быстрорежущих сталях содержится около 4 % Cr и его содержание в марке стали не указывают, так же не указывают содержание углерода. Например, сталь Р6М5К5содержит около 1 % С; 6 %W; 5 % Mo; 5 % Co.

Некоторые высоколегированные стали с большим количеством легирующих элементов упрощенно обозначают по заводу–изготовителю и порядковому номеру разработки. Например, стали производства металлургического завода «Электросталь» (Россия) обозначают «ЭИ» (Электросталь исследовательская), «ЭП» (Электросталь пробная), производства завода «Днепроспецсталь» обозначают «ДИ».

По ГОСТ 5521–93 «Прокат стальной для судостроения» выпускают ряд сталей повышенной прочности. К этим сталям предъявляют повышенные требования к стабильности свойств и сохранению их при низкой температуре эксплуатации. В начале маркировки этих сталей стоит одна из букв «А», «В», «D», «Е», которая указывает на гарантированный уровень свойств и условия испытания данной стали. Химический состав самой стали определен в стандарте. Сталь обычной прочности обозначают одной буквой из указанных выше (например, B). Сталь повышенной прочности обозначается буквой (А, D или Е) и цифрами – А27S, D36, E40S. Например, широко распространенная сталь D32 входит в группу, которую испытывают на ударный изгиб при –20 oС, стали группы «Е» испытывают при –40 ОС. Индекс «РС» перед маркой стали указывает, что она изготовлена под надзором Регистра (инспектор Регистра оформляет сертификат) – РС А32

 

2 Ударная вязкость металлов

Одним из важных внешних факторов, влияющих на сопротивление металла пластическому течению и разрушению, является скорость деформации (см. ниже).

Увеличение скорости деформации, как правило, изменяет свойства металла в том же направлении, что и снижение температуры. В различных условиях эксплуатации изделий скорость де­формации может меняться в широчайшем диапазоне — от 10-6 до 106 с-1. Соответственно могут быть очень резкими изменения механических свойств, что определяет необходимость проведения динамических испытаний.

Статические испытания, описанные выше, проводят при скоростях деформации 10-4...10-2 с-1. Изменение скорости деформа­ции в этом интервале в большинстве случаев не влияет на механические свойства. Однако переход к ударным испытаниям со скоростями деформации порядка 102 с-1 может вызывать качественные изменения механических свойств металлов.

Еще в начале XX в. Шарпи показал, что материалы с близкими по величине характеристиками прочности и пластичности, опре­деленными при статических испытаниях на растяжение, могут резко различаться по своим свойствам при ударном изгибе. В связи этим Шарпи предложил испытание на ударный изгиб надрезанных образцов. В дальнейшем этот метод испытаний с теми или иными видоизменениями получил широкое распространение и в настоящее время стандартизован во многих странах.

При испытании на удар оценивают работоспособность металла в сложных условиях нагружения и выявляют его склонность к хрупкому разрушению. В общем случае склонность к хрупкому разрушению зависит не только от скорости деформации, но и от схемы напряженного состояния и температуры тела. Метод основан на разрушении стандарт­ною образца с концентратором (надрезом) посередине ударом на маятниковом копре. ГОСТ 9454 предусматривает испытания образцов трех типов: 1 - сечением 10x10 мм, длиной 55 мм и с U-об разным надрезом шириной и глубиной 2 мм и радиусом 1 мм; 2 - образцы того же сечения и длины и V-образным надрезом той же геометрии, что и первый образец; 3 — образцы длиной 55 мм, высотой 11 мм и шириной 10 мм с Т-образным концентратором (надрез, имитирующий усталостную трещину).

Образцы с V-образным надрезом являются основными и их и используют при контроле металлопродукции для ответственных конструкций (транспортных средств, летательных аппаратом др.), а образцы с U-образным надрезом применяют при приемочном контроле металлопродукции; образцы с Т-образным надрезом предназначены для испытания материалов, работающих в особо ответственных конструкциях.

При испытании металлов на удар определяют ударную вязкость, которую обозначают КС. Ударная вязкость КС - это отношение работы К разрушения стандартного образца к площади его поперечного сечения F в месте надреза:

КС = K/F, Дж/м2

В зависимости от вида концентратора в образце (U, V, Т) в обозначении ударной вязкости вводят третий индекс, согласно виду концентратора: KCU, KCV, КСТ.

Испытание на ударную вязкоость проводят на копрах маятникового типа (см. Рис. 1). Стандартный образец 1 устанавливают на опорах стоек копра так, чтобы удар маятника 2 приходился против надреза. Маятник массой G при помощи специальной рукоятки поднимают на высоту Н в верхнее исходное положение I. При падении маятник ударяет по образцу, разрушает его и поднимается в положение II высоту h. Для остановки маятника имеется тормоз.

 

Рис. 1 Схема ударного испытания образцов на маятниковом копре

 

Если запас потенциальной энергии маятника обозначить через GH, то работа, затраченная на деформацию и разрушение образца, равна разности энергии маятника в его положениях I и II (до и после удара), т. е.

К = GH -Gh = G(H - h)

Выразив высоту маятника в положении до и после удара через пишу маятника l и углы α и β, получим выражение для определе­нии работы, затраченной на деформацию и разрушение образца:

К= Gl (cos β - cos α),

где α — угол начального подъема маятника; β — угол подъема маят­ника после разрушения образца, фиксируемый на шкале 3 (см. Рис. 1).

Масса груза и длина маятника известны. Угол α является величиной постоянной. Зная угол β по результатам испытаний, опре­деляют работу К и ударную вязкость КС.

Кроме испытаний на ударный изгиб, используют динамические испытания металлопродукции на растяжение, сжатие и круче­ние. Эти испытания не получили большого распространения, так как проводить их сложнее, чем испытания на изгиб. Кроме того, они не дают принципиально новой информации по сравнению с испытаниями на изгиб, поэтому такие испытания целесообразно применять только в тех конкретных случаях, когда они хорошо имитируют заранее известные условия работы материала. Некото­рые из этих методов, например испытание на динамическое сжа­тие (осадку), приобрели характер технологических проб.