Резонанс.

Резонанс деп –периодты түрде сырттан әср етуші күштің жиілігі тербелмелі жүйенің меншікті жиілігіне жақындағанда сол тербелмелі жүйедегі еріксіз тербелістер амплитудасының күрт арту құбылысын айтамыз.

Резонанс құбылысымен қай-қайсымыз да жиі ұшырасамыз.Бірақ көбінесе оған мән бермейміз. Мысалы, үйдің тұсынан трамвай, трактор, пойыз, жүк машинасы, т.б. өте шыққан кезде, терезенің әйнегі дірілдеп, шыныаяқтар сылдырлайды. Өйткені сыртқы тербелістер жиілігі үйдегі денелердің меншікті жиілігімен сәйкес келеді де, соның салдарынан резонанс құбылысы пайда болады.

Резонанс пайдалы да, зиянды да болуы мүмкін. Пайдалы болған кезде оны арттыруға тырысады. Мысалы, жол құрылысында, үйдің іргетасын құйғанда, құйматасты (бетонды) немесе сусыма нәрселерді тығыздау үшін арнайы вибратор-тығыздағыштар пайдаланылады. Ал зиянды болғанда, резонансты болдырмау үшін әртүрлі шаралар қолданылады. Мысалы, электрқозғалтқыштар, бу және газ турбиналарының табаны іргетасқа бекітілген болса, олардың тербелісі біртұтас еден арқылы машина орналасқан үйге беріледі. Соның салдарынан іргетастың еріксіз тербелістерінің амплитудасы үлкен мәнге жетіп, нәтижесінде үйдің құлауы да мүмкін.Мұндай жағдайларда тербелістердің меншікті жиілігі сыртқы күштің жиілігімен дәл келмейтіндей ету керек.

35. Электромагниттік толқындар

Айнымалы электромагниттік өріс тербелістерінің кеңістікте таралуын электромагниттік толқындеп атайды. Максвеллдің болжамы бойынша электромагниттік толқын тогы бар өткізгіштің бойымен, диэлектрикте және электр зарядтары жоқ вакуумде де тарала алады. Максвелл теориясынан шығатын аса маңызды салдардың бірі — электромагниттік толқынның таралу жылдамдығының шектілігі. Оның есептеулері бойынша электромагниттік толқынның таралу жылдамдығы:

м\с, (3.1)

мұндағы Ф\м — электрлік және Гн\м— магниттік тұрақтылар. Бұл электромагниттік өрістің іргелі қасиеті. Электромагниттік толқынның ортадағы таралу жылдамдығы Максвелл формуласы бойынша анықталады:

, (3.2)

мұндағы — ортаның сыну көрсеткіші, — ортаның диэлектрлік және — магниттік өтімділіктері.
Электромагниттік толқынның теориялық есептеулер арқылы табылған вакуумдегі жылдамдығы тікелей өлшенген жарық жылдамдығына тең болуының маңыздылығы ерекше. Жарық — электромагниттік толқын болып шықты.

Енді электромагниттік толқынның кеңістікте таралу механизмін қарастырайық. Осы түрленулерді жүзеге 3.5-сурет асыру үшін кеңістіктің кез келген бір аймағында өрістің біреуінің ұйытқуын туғызу қажет. 3.5-суретте құйынды электр және магнит өрістерінің ұйытқуының таралу процесі көрсетілген. Оны тепе-теңдік қалпында тербелетін немесе шеңбер бойымен тербеле қозғалатын электр заряды арқылы жүзеге асыруға болады. Кеңістіктің бір нүктесінде өте үлкен жиілікпен тербелетін электр зарядының айналасында, модулі мен бағыты периодты өзгеретін электр өрісінің кернеулік векторы пайда болады. Нақ осы мезетте модулі және бағыты да периодты түрде өзгеретін магнит өрісінің индукция векторы да туады. Бұл өрістің тербелістері жақын жатқан нүктелердегі электромагниттік тербелістер көзі болып табылады және оған бір-біріне перпендикуляр электр өрісінің кернеулік векторы мен магнит өрісі индукциясы векторының тербелістері кешігіп жетеді. Осылай электромагниттік өpic кеңістіктің барлық бағытында м\с жылдамдықпен электромагниттік толқын түрінде тарайды (3.6-сурет).

Электромагниттік толқындағы және векторларының кез келген нүктесіндегі тербеліс фазалары бірдей. Бірдей фазада тербелетін ең жақын екі нуктеніц арақашықтығы электромагниттік толқын шындығын береді:

(3.3)

Электромагниттік толқынның негізгі сипаттамасы— оның тербеліс жиілігі (немесе периоды ). Себебі электромагниттік толқын бір ортадан екінші ортаға өткенде толқын ұзындығы өзгереді, ал жиілігі өзгермей тұрақты күйде қалады. Электр өрісінің кернеулік және магнит өрісінің индукция векторларының тербеліс бағыттары толқынның таралу бағытына перпендикуляр. Демек, электромагниттік толқын — көлденең толқын.

Электромагниттік толқын түрлері:

1. Электромаг-к көлденең толқын-негізгі толқын б.т. Ол көлденең Е мен Н толқындарынан тұрады.

2. Жоғарғы ретті электр Е толқыны-Ол жоғарғы ретті толқын б.т. Бұда көлденең электр өрісінен басқа бір-бірден электрлік бойлық толқындар болады.

3. Жоғарғы ретті магниттік Н толқын- Ол жоғарғы ретті толқын б.т. Бұда көлденең магнит өрісінен басқа бір-бірден магниттік бойлық толқындар болады.

4. Аралас толқын-барлығы алты (3 коорд) толқын компоненті болады.

36. Пойнтинг векторы — электр-магниттік энергия ағынының шамасы мен бағытын анықтайтын тығыздық векторы. Ол ағылшын физигі Дж. Г.Пойнтингтің (1852 — 1914) есімімен аталады. Пойнтинг векторының модулі эл.-магн. толқынның таралу бағытына перпендикуляр бірлік бет арқылы бірлік уақытта тасымалданатын электр-магниттік энергияға тең. Пойнтинг векторы бірліктердің СГС жүйесінде түрінде, ал бірліктердің халықаралық (СИ) жүйесінде П=[EH] түрінде жазылады; мұндағы [EH] — электр және магнит өрістері кернеуліктерінің векторлық көбейтіндісі, с — жарықтың вакуумдағы жылдамдығы. Е мен Н векторлары өзара перпендикуляр және электр-магниттік толқынның таралу бағыты мен Пойнтинг векторымен бағыттас.

 

37.

Максвелл магнит өрісінің кез-келген өзгерісі қоршаған кеңістікте құйынды электр өрісін тудырады деп қорытындылады. Фарадей тәжірибелеріндегі тұйықталған өткізгіште индукциялық ЭҚК-н де тудыратын құйынды электр өрісі екен. Бұл құбылыстың ерекшелігі сол, құйынды электр өрісі тек өткізгіште емес, бос кеңістікте де п.б. Өткізгіштің кез-келген нүктелерінде магнит мағнит өрісі индукциясының өзгерісі кезінде құйынды электр өрісі туындайды. Эл. Өрісінің күш сызықтары мен магнит инд/ң сызықтарын орап қоршайды және оның жазықтығына перпендикуляр орналасады.

Электр өрісі – электрмагниттік өрістің дербес бір түрі. Ол электр зарядының айналасында немесе бір уақыт ішіндегі магнит өрісінің өзгерісі нәтижесінде пайда болады. Э. ө-нің магнит өрісінен өзгешелігі – ол қозғалатын да, қозғалмайтын да электр зарядтарына әсер етеді. Э. ө-нің бар екендігін оның қозғалмайтын зарядқа әсер ететін күші бойынша байқауға болады. Электр өрісінің кернеулігі – Э. ө-нің сандық сипаттамасы болып табылады.Ығысу тогы – айнымалы электр өрісінің магниттік әсерін сипаттайтын физикалық шама. Ығысу тогының тығыздығы (jығ) бірліктердің халықаралық жүйесінде (СИ) мына формула бойынша анықталады:

jығ=dD/dt

(мұндағы D – электрлік ығысу, t – уақыт) және оның өлшеу бірлігі: а/м2.

 

38. Максвелл теңдеулеріXIX ғасырдың 60-ы жылдары ағылшын ғалымы Максвелл электр және магнетизмнен тәжірибе жүзінде ашылған заңдылықтарды біріктіре келе, электромагниттік толқынның жалпы теориясын берді. Бұл теорияда электростатиканың негізгі теңдеуі, электр және магнит өрістері үшін Остроградский-Гаусс теоремасы, магнит өрісі үшін толық ток заңы, электромагниттік индукция заңы және тағы басқа заңдар қарастырылған. Максвелл теориясы негізінен 4 теңдеуден тұрады және әр теңдеу 2 түрде: интегралдық және дифференциалдық түрде беріледі.Максвелдің дифференциалдық теңдеулері интегралдық теңдеулерінен векторлық анализдің екі теоремалары: Гаусс теоремасы және Стокс теоремаларының көмегімен алынады.

 

Максвелдің I-теңдеуі

Бұл жағдайда Максвелл электромагниттік индукция заңын қарастырды. Уақыт өтуімен өзгеретін айнымалы магнит өрісі өзін қоршаған кеңістікте құйынды электр өрісін тудырады.Тұйық бет арқылы өтетін кернеулік векторының циркуляциясы осы бетпен шектелген беттегі магнит өрісінің индукция векторының теріс таңбамен алынған өзгеру жылдамдығына тең болады.

Максвелдің II-теңдеуі- толық ток заңына негізделген.

Максвелдің дифференциал түріндегі II-теңдеуін аламыз

Максвелдің III-теңдеуі

Максвелдің интеграл түріндегі III-теңдеуі заттардағы электр өрісі үшін Остроградский-Гаусс теоремасы болап табылады.

Максвелдің дифференциал түріндегі III-теңдеуі келесі түрде жазылады:

Максвелдің IV-теңдеуі

Максвелдің интеграл түріндегі IV-теңдеуі магнит өрісі үшін Остроградский-Гаусс теоремасы болап табылады.


Максвеллдің дифференциал түріндегі IV-теңдеуі

 

39. Жарықтың интерференциясы мен дифракциясы

Жарық -Корінетін жарық - барлық жарықтың бірі– көрінетін сәуле, яғни жиілігі 7,5 •1014 – 4,0 • 1014Гц аралығындағы адам көзі қабылдайтын электрмагниттік толқын;

Жарық дифракциясы – жарық толқындарының жолында кездесетін тосқауылды немесе бөгеттерді (тар саңылау, жіңішке сым, т.б.) орап өту құбылысы. Жарық дифракциясы болу үшін жарық түскен дененің айқын шекарасы болуы тиіс. Дифракция жарыққа ғана тән емес, басқа да толқындық процестерде де байқалады (мысалы, механикалық толқындардың жолында кездескен тосқауылды орап өтуі, т.б.). Жарық дифракциясы кезінде жарықтың түзу сызық бойымен таралу заңы, яғни геометриялық оптиканың негізгі заңдары бұзылады. Жарық толқындарының ұзындығы өте қысқа болғандықтан, қалыпты жағдайда жарық дифракциясы байқалмайды. Жарық дифракциясы байқалуы үшін жарық жолындағы бөгеттің өлшемдері жарықтың толқын ұзындығымен (r~λ) шамалас болуы керек. Жарық дифракциясы – жарықтың толқындық қасиетін дәлелдейтін негізгі құбылыстардың бірі. Бұл құбылысты 17-ғасырда италиялық физик және астроном Франческо Гримальди ашты, ал оны француз физигі Огюстен Жан Френель түсіндірді.

Жарық интерференциясы – жарық толқындарының қабаттасуы нәтижесінде бірін-бірі күшейтуі немесе әлсіретуі. Егер екі толқынның өркештері мен өркештері, сайлары мен сайлары дәл келсе, онда олар бірін-бірі күшейтеді; ал біреуінің өркештері екіншісінің сайларына дәл келсе бірін-бірі әлсіретеді. Жарық интерференциясы кезінде қабаттасқан жарық шоғының қарқындылығы бастапқы шоқтың қарқындылығына тең болмайды. Механикалық толқындар да интерференцияланады. Жарық интерференциясына қатысты кейбір құбылыстарды Исаак Ньютон бақылаған. Бірақ ол өзінің корпускулалық теориясы тұрғысынан бұл құбылысты түсіндіре алмады. 19-ғасырдың басында ағылшын ғалымы Томас Юнг және француз физигі Огюстен Френель жарық интерференциясын толқындық құбылыс ретінде түсіндірді. Кез келген жарық толқындары қабаттасқанда интерференция құбылысы байқалмайды. Тек когерентті толқындар ғана интерференцияланады. Жарық интерференциясының көмегімен жарық толқындарының ұзындығы өлшенеді, спектр сызықтарының нәзік түзілісі зерттеледі, заттың тығыздығы мен сыну көрсеткіші тәрізді қасиеттері анықталады.

Когерентті толқындар-фазаларының айырмасы уақытқа байланысты өзгермейтін толқындар.

 

40. Электромагниттік толқындар — кеңістікте айнымалы электромагниттік өрістердің таралуы.

Электромагниттік толқынның ортадағы таралу жылдамдығы:

ε-ортаның диэлектрлік өтімділігі,

μ- магниттік өтімділігі

Электромагниттік толқындардың негізгі сипаттамасы-оның тербеліс жиілігі немесе периоды. Себебі, электромагниттік толқын бір ортадан екінші ортаға өткенде толқын ұзындығы өзгереді, ал жиілігі мен периоды өзгермей тұрақты күйде қалады.Электр өрісінің кернеулік және магнит өрісінің индукция векторларының тербеліс бағыттары толқынның таралу бағытына перпендикуляр. Демек электромагниттік толқын – көлденең толқын.

Электромагниттік толқындардың қасиеттерін толқын ұзындығы 3 см электромагниттік толқын шығаратын арнайы генераторды қолданып зерттейді. Аса жоғары жиілікті генератор қоздыратын электромагниттік толқын рупор түрінде таратқыш антеннада ось бағытымен шығарылады. Қабылдағыш антеннаның пішіні дәл таратқыш антеныа сияқты. Қабылдағыш антеннада кристалдық диод орнатылған, ол антеннада қозатын жиілігі жоғары айнымалы токты бір полярлы толықсыма тоққа айналдырады. Ток күшейтілгеннен кейін дыбыс қабылдағышқа немесе гальванометрге беріліп тіркеледі.