Основные параметры насоса характеризующие его работу

Работа любого насоса характеризуется несколькими параметрами. Основными из них являются: подача,напор, мощность, коэффициент полезного действия(к. п. д.) и частота вращения. Подача. Различают объемную подачу, под которой понимают отношение объема подаваемой жидкой среды ко времени и массовую подачу насоса — отношение массы подаваемой жидкой среды ко времени. В судовой практике объемная подача Q обычно выражается в кубических метрах в час или секунду. Массовая подача Qм связана с объемной соотношением: Qм= ρQ, где ρ - плотность жидкости. Плотность ρ для разных жидкостей различна и зависит от температуры. Для пресной воды при температуре до 30 °С ее принимают равной 1000 кг/м3. В практических расчетах для минеральных масел можно брать ρ = 900 кг/м3. У мазутов плотность обычно несколько выше, чем у масел, например у мазута марки 40 она при температуре 20 °С составляет 940 — 960 кг/м3. Плотность жидкости зависит также от давления; она возрастает с увеличением последнего. Однако при расчете судовых насосов этим пренебрегают. Напор. В гидравлике — это высота, на которую способна подняться жидкость под действием статического давления, разности высот и внешней кинетической энергии жидкости. Он определяется через удельную (отнесенную к единице веса) энергию жидкости, проходящей через насос, и выражается в метрах (Дж.м). Напор H насоса состоит из статического Hст и динамического Hд напоров: H = Hст + Hд Статический напор Hст= (ρн - ρв)/ρg + (zн - zв) Динамический напор Hд = (vн2 - vв2)/2g Для насосов объемного типа в качестве основного параметра обычно указывают не напор H, а создаваемое ими полное давление р. Между давлением и напором существует зависимость p = ρgH. Мощность и к.п.д. Энергия, подводимая к насосу от двигателя в единицу времени, представляет его мощность N. Часть этой энергии теряется в насосе в виде потерь. Другая часть энергии, получаемая насосом от двигателя в единицу времени, есть полезная мощность насоса (кВт), которая определяется из выражения Nп = QρgH/103 = Qp/103. Потери энергии в насосе характеризуются его к. п. д.η, представляющим собой отношение: η = Nп/N. Коэффициент полезного действия насоса можно представить в виде произведения трех к. п. д. — гидравлического, объемного и механического, т. е. η = ηгηоηм. Гидравлический к. п. д. — это отношение полезной мощности насоса к сумме полезной мощности и мощности, затраченной на преодоление гидравлических сопротивлений в насосе, т. е. он характеризует гидравлические потери в насосе. Объемный к. п. д. характеризует объемные потери, обусловленные утечками жидкости внутри насоса. Механический к.п.д. характеризует потери, затрачиваемые на преодоление механического трения в насосе. Частота вращения. В качестве данного параметра принимается частота вращения n вала насоса в минуту (об/мин). Назначение или выбор частоты вращения зависит от ряда условий, таких, как тип насоса и его двигателя, ограничения по массе и габаритным размерам, требования в отношении экономичности и др.

2. Особенности фильтрации нефти и воды в пористо-трещиноватых коллекторах.

Для понимания особенностей фильтрации жидкости и газа втрещиноватых породах в нефтегазовой одземной гидромеханике рассматри-. вают две модели пород - чисто трещиноватые и трещиновато-пористые (рис. 12.1). В чисто трещиноватых породах (см. рис. 12.1, а) блоки породы, расположенные между трещинами, практически непроницаемы,движение жидкости и газа происходит только по трещинам (на рисунке показано стрелками), т. е. трещины служат и коллекторами, и проводниками жидкости к скважинам. К таким породам относятся сланцы, кристаллические породы, доломиты, мергели и некоторые известняки. Рассматриваятрещиноватую породу с жидкостью как сплошную среду, нужно заэлемент породы принимать объем, содержащий большое количествоблоков, и усреднение фильтрационных характеристик проводить в пределах этого элемента, т.е. масштаб должен быть гораздо большим, чем впористой среде. Если представить себе блок в виде куба со стороной а = 0,1 м, то в качестве элементарного объема надо взять куб со стороной порядка 1 м.  Выведем дифференциальные уравнения движения жидкости и газа в деформируемой трещиновато-пористой среде, считая, что в каждой точке имеются два давления (р в системе трещины, />2 в пористых блоках) и двескорости фильтрации- 1 и и 2 соответственно. Перетоки между средамиопределяются формулами (12.9) или (12.10). Подземная гидромеханика - наука о движении жидкостей, газов и их смесей в пористых и трещиноватых горных породах. Она является той областью гидромеханики, в которой рассматривается не движение жидкостей и газов вообще, а особый вид их движения-фильтращ1я, которая имеет свои специфические особенности. Она служиттеоретической основой разработки нефтяных, газовых игазоконденсатных месторождений. Вместе с тем методами теориифильтрации решаются важнейшие задачи гидрогеологии, инженерной геологии, гидротехники, химической технологии и т.д. Расчет притоков жидкости к искусственным водозаборам и дренажным сооружениям, изучение режимов естественных источников и подземных потоков, расчет фильтрации воды в связи с сооружением и эксплуатацией плотин, понижением уровня грунтовых вод, проблемы подземной газификации угля, задачи о движении реагентов через пористые среды и специальные фильтры, фильтрация жидкостей и газов через стенки пористых сосудов и труб-вот далеко не полный перечень областей широкого использования методов теории фильтрации Природные жидкости (нефть, газ, подземные воды) находятся, в основном, в пустотах-порах и трещинах осадочных горных пород. Их движение происходит либо вследствие естественных процессов (миграция углеводородов), либо в результате деятельности человека, связанной сизвлечением полезных ископаемых, строительством и эксплуатацией гидротехнических сооружений. Движение жидкостей, газов и их смесейчерез твердые (вообще говоря, деформируемые) тела, содержащиесвязанные между собой поры или трещины, называется фильтрацией.Теория фильтрации, являющаяся разделом механики сплошной среды, получила большое развитие в связи с потребностями гидротехники, гидромелиорации, гидрогеологии, горного дела, нефтегазодобычи,химической технологии и т.д. Теоретической основой разработки нефтегазоводоносных пластов служит нефтегазовая подземнаягидромеханика, изучающая фильтрацию нефти, газа и воды в пористых и (или) трещиноватых горных породах. Промысловые данные, а также данные исследования кернов и шлифов свидетельствуют о том, что трещиноватые породы имеют сложное строение, а движение в них жидкости и газа отличается некоторымиособенностями по сравнению с движением в пористой среде. Втрещиноватой породе имеются микро- и макротрещины, мелкие и крупные каверны, полости сама порода - матрица (пространство между трещинами) может быть абсолютно непроницаемой или представлять С069Й обычнуюпористую среду. Раскрытия макротрещин имеют порядок 1мм, а в отдельных случаях и больше, микротрещин -1 -100 мкм. Исходя из того, чтосопротивление движению жидкости в трещиноватых породах достаточно велико, считается, что макротрещины не имеют значительной протяженности и в большинстве случаев соединяются между собоймикротрещинами, которые и создают большие сопротивления.

3. Основы разработки нефтяных месторождений.

Разработка месторождений полезных ископаемых – система организационно – технических мероприятий по добыче полезных ископаемых из недр. Разработка нефтяных и газовых месторождений осуществляется с помощью буровых скважин. Иногда применяется шахтная добыча нефти (Ярегское нефтяное месторождение, Республика Коми). Под системой разработки нефтяных месторождений и залежей понимают форму организации движения нефти в пластах к добывающим скважинам. Систему разработки нефтяных месторождений определяют: • порядок ввода эксплуатационных объектов многопластового месторождения в разработку; • сетки размещения скважин на объектах, темп и порядок ввода их в работу; • способы регулирования баланса и использования пластовой энергии. Следует различать системы разработки многопластовых месторождений и отдельных залежей (однопластовых месторождений). Объект разработки – один или несколько продуктивных пластов месторождения, выделенных по геолого-техническим условиям и экономическим соображениям для разбуривания и эксплуатации единой системой скважин. При выделении объектов следует учитывать: • геолого-физические свойства пород-коллекторов; • физико-химические свойства нефти, воды и газа; • фазовое состояние углеводородов и режим пластов; • технику и технологию эксплуатации скважин. Объекты разработки подразделяют на самостоятельные и возвратные. Возвратные объекты, в отличие от самостоятельных, предполагается разрабатывать скважинами, эксплуатирующими в первую очередь какой-то другой объект. Сетка размещения скважин. Сетка скважин – характер взаимного расположения добывающих и нагнетательных скважин на эксплуатационном объекте с указанием расстояний между ними (плотность сетки). Скважины располагают по равномерной сетке и неравномерной сетке (преимущественно рядами). Сетки по форме бывают квадратными, треугольными и многоугольными. При треугольной сетке на площади размещается скважин больше на 15,5 %, чем при квадратной в случае одинаковых расстояний между скважинами. Под плотностью сетки скважин подразумевают отношение площади нефтеносности к числу добывающих скважин. Вместе с тем это понятие очень сложное. Плотность сетки определяется с учетом конкретных условий. С конца 50-х годов месторождения эксплуатируются с плотностью сетки (30 60)·104 м2/скв. На Туймазинском месторождении плотность сетки 20 104 м2/скв. при расстоянии между скважинами в рядах 400 м, Ромашкинском –60 104 м2/скв. – 1000 м 600 м, Самотлорском – 64 104 м2/скв. Стадии разработки месторождений. Стадия – это период процесса разработки, характеризующийся определенным закономерным изменением технологических и технико- экономических показателей. Под технологическими и технико- экономическими показателями процесса разработки залежи понимают текущую (среднегодовую) и суммарную (накопленную) добычу нефти, текущую и суммарную добычу жидкости (нефти и воды), обводненность добываемой жидкости (отношение текущей добычи воды к текущей добыче жидкости), текущий и накопленный водонефтяной фактор (отношение добычи воды к добыче нефти), текущую и накопленную закачку воды, компенсацию отбора закачкой (отношение закачанного объема к отобранному при пластовых условиях), коэффициент нефтеотдачи, число скважин (добывающих, нагнетательных), пластовое и забойное давления, текущий газовый фактор, средние дебит добывающих и приемистость нагнетательных кважин, себестоимость продукции, производительность труда, капитальные вложения, эксплуатационные расходы, приведенные затраты. По динамике добычи нефти выделяют четыре стадии процесса разработки залежей пластового типа в гранулярных коллекторах при водонапорном режиме (рис. 6.1). Графики построены в зависимости от безразмерного времени , представляющего собой отношение накопленной добычи жидкости к балансовым запасам нефти.

Рис. 6.1. Типовая динамика темпа добычи нефти Tдн , жидкости Tдж и обводненности продукции в n при водонапорном режиме с выделением стадий разработки: 1 – освоение эксплуатационного объекта; 2 – поддержание высокого уровня добычи нефти; 3 – значительное снижение добычи нефти; 4 – завершающая

Первая стадия – освоение эксплуатационного объекта - характеризуется: • интенсивным ростом добычи нефти до максимально заданного уровня (прирост составляет примерно 1 2 % в год от балансовых запасов); • быстрым увеличением действующего фонда скважин до 0,6 0,8 от максимального; • резким снижением пластового давления; • небольшой обводненностью продукции (обводненность продукции достигает 3 4 % при вязкости нефти не более 5 мПа с и 35 % при повышенной вязкости); • достигнутым текущим коэффициентом нефтеотдачи (около 10 %). Продолжительность стадии зависит от промышленной ценности залежи и составляет 4 5 лет, за окончание стадии принимается точка резкого перегиба кривой темпа добычи нефти (отношение среднегодового отбора нефти к балансовым ее запасам). Вторая стадия – поддержание высокого уровня добычи нефти - характеризуется: • более или менее стабильным высоким уровнем добычи нефти (максимальный темп добычи нефти находится в пределах 3 17 %) в течение 3 7 лет и более для месторождений с маловязкими нефтями и 1 2 года – при повышенной вязкости; • ростом числа скважин, как правило, до максимума за счет резервного фонда; • нарастанием обводненности продукции (ежегодный рост обводненности составляет 2 3 % при малой вязкости нефти и 7 % и более при повышенной вязкости, на конец стадии обводненность колеблется от нескольких до 65 %); • отключением небольшой части скважин из-за обводнения и переводом многих на механизированный способ добычи нефти; • текущим коэффициентом нефтеотдачи , составляющим к концу стадии 30 50 %, а для месторождений с "пиком" добычи – 10 15 %. Третья стадия – значительное снижение добычи нефти – характеризуется: • снижением добычи нефти (в среднем на 10 20 % в год при маловязких нефтях и на 3 10 % при нефтях повышенной вязкости); • темпом отбора нефти на конец стадии 1 2,5 %; • уменьшением фонда скважин из-за отключения вследствие обводнения продукции, переводом практически всего фонда скважин на механизированный способ добычи; • прогрессирующим обводнением продукции до 80 85 % при среднем росте обводненности 7 8 % в год, причем с большей интенсивностью для месторождений с нефтями повышенной вязкости; • повышением текущих коэффициентов нефтеотдачи на конец стадии до 50 60 % для месторождений с вязкостью нефти не более 5 мПа с и до 20 30 % для месторождений с нефтями повышенной вязкости; • суммарным отбором жидкости 0,5 1 объема от балансовых запасов нефти. Эта стадия наиболее трудная и сложная для всего процесса разработки, ее главная задача – замедление темпа снижения добычи нефти. Продолжительность стадии зависит от продолжительности предыдущих стадий и составляет 5 10 и более лет. Определить границу между третьей и четвертой стадиями по изменению среднегодового темпа добычи нефти обычно трудно. Наиболее четко ее можно определить по точке перегиба кривой обводненности. Совместно первую, вторую и третью стадии называют основным периодом разработки. За основной период отбирают из залежей 80 90 % извлекаемых запасов нефти. Четвертая стадия – завершающая – характеризуется: • малыми, медленно снижающимися темпами отбора нефти (в среднем около 1 %); • большими темпами отбора жидкости (водонефтяные факторы достигают 0,7 7 м3/м3); • высокой медленно возрастающей обводненностью продукции (ежегодный рост составляет около 1 %); • более резким, чем на третьей стадии, уменьшением действующего фонда скважин из-за обводнения (фонд скважин составляет примерно 0,4 0,7 от максимального, снижаясь иногда до 0,1); • отбором за период стадии 10 20 % балансовых запасов нефти. Продолжительность четвертой стадии сопоставима с длительностью всего предшествующего периода разработки залежи, составляет 15 20 лет и более, определяется пределом экономической рентабельности, т. е. минимальным дебитом, при котором еще рентабельна эксплуатация скважин. Предел рентабельности обычно наступает при обводненности продукции примерно на 98 %. Размещение эксплуатационных и нагнетательных скважин на месторождении. Для поддержания пластового давления и увеличения коэффициента отдачи пласта, который на разных месторождениях колеблется в широких пределах, применяют закачку под давлением в продуктивные пласты воды или газа через нагнетательные скважины. Первый метод связан с закачкой под большим давлением (порядка 20 МПа) в нефтяные пласты воды, прошедшей специальную подготовку. Различают законтурное, внутриконтурное и площадное заводнение нефтяных пластов. При законтурном заводнении воду закачивают в пласт через нагнетательные скважины, размещаемые за внешним контуром нефтеносности по периметру залежи. Эксплуатационные скважины располагают внутри контура нефтеносности рядами параллельно контуру. Суммарный объем отбираемой жидкости равен количеству нагнетаемой в пласт воды (рис. 6.2).

Рис. 6.2. Схема законтурного заводнения

На больших месторождениях применяют внутриконтурное заводнение – разрезание нагнетательными рядами на отдельные эксплуатационные блоки. На 1 т извлекаемой нефти необходимо нагнетать 1,6 2 м3 воды. Площадное заводнение применяется как вторичный метод добычи нефти при разработке нефтяных залежей на ненапорных режимах, когда запасы пластовой энергии в значительной степени израсходованы, а в недрах есть значительное количество нефти. Закачка воды в пласт осуществляется через систему нагнетательных скважин, расположенных равномерно по всей залежи. Нормальный расход воды – 10 15 м3 на 1 т нефти. Заводнение позволило повысить нефтеотдачу залежей (по сравнению с режимом растворенного газа), но в настоящее время оно практически исчерпало свои возможности, и для повышения его эффективности разрабатываются более совершенные его виды. К таким относятся: щелочное заводнение, полимерное заводнение, использование пен и эмульсий, вытеснение нефти горячей водой и паром. Вытеснение нефти возможно также двуокисью углерода, растворителями и газами высокого давления, продуктами внутрипластового горения нефти. Кроме этих методов внедряют в практику цикличное заводнение, изменение направлений фильтрационных потоков жидкостей в пласте, нагнетание воды при высоких давлениях, сформированный отбор жидкостей, микробиологическое воздействие на нефтяной пласт и т. д.