Выходы цифровых микросхем.
Каждая микросхема преобразует тем или иным способом последовательность входных сигналов в последовательность выходных сигналов. Способ преобразования чаще всего описывается или в виде таблицы (так называемой таблицы истинности), или в виде временных диаграмм, то есть графиков зависимости от времени всех сигналов.
Выходы микросхем принципиально отличаются от входов тем, что учет их особенностей необходим даже на первом и втором уровнях представления.
Существуют три разновидности выходных каскадов, существенно различающиеся как по своим характеристикам, так и по областям применения:
- стандартный выход или выход с двумя состояниями (обозначается 2С, 2S или, реже, ТТЛ, TTL);
- выход с открытым коллектором (обозначается ОК, OC);
- выход с тремя состояниями или (что то же самое) с возможностью отключения (обозначается 3С, 3S).
Стандартный выход 2С имеет всего два состояния: логический нуль и логическая единица, причем оба они активны, то есть выходные токи в обоих этих состояниях (IOL и IOH) могут достигать заметных величин. На первом и втором уровнях представления такой выход можно считать состоящим из двух выключателей, которые замыкаются по очереди , причем замкнутому верхнему выключателю соответствует логическая единица на выходе, а замкнутому нижнему — логический нуль.
Рис. 1.9. Три типа выходов цифровых микросхем
Выход с открытым коллектором ОК тоже имеет два возможных состояния, но только одно из них (состояние логического нуля) активно, то есть обеспечивает большой втекающий ток IOL. Второе состояние сводится, по сути, к тому, что выход полностью отключается от присоединенных к нему входов. Это состояние может использоваться в качестве логической единицы, но для этого между выходом ОК и напряжением питания необходимо подключить нагрузочный резистор R (так называемый pull-up) величиной порядка сотен Ом. На первом и втором уровнях представления такой выход можно считать состоящим из одного выключателя, замкнутому состоянию которого соответствует сигнал логического нуля, а разомкнутому — отключенное, пассивное состояние. Правда, от величины резистора R зависит время переключения выхода из нуля в единицу, что влияет на задержку tLH, но при обычно используемых номиналах резисторов это не слишком важно.
Наконец, выход с тремя состояниями 3С очень похож на стандартный выход, но к двум состояниям добавляется еще и третье — пассивное, в котором выход можно считать отключенным от последующей схемы. На первом и втором уровнях представления такой выход можно считать состоящим из двух переключателей, которые могут замыкаться по очереди, давая логический нуль и логическую единицу, но могут и размыкаться одновременно. Это третье состояние называется также высокоимпедансным или Z-состоянием. Для перевода выхода в третье Z-состояние используется специальный управляющий вход, обозначаемый OE (Output Enable — разрешение выхода) или EZ (Enable Z-state).
18. Каталоги медиатек.
Каталог - структурна единица организации данных по одной предметной области или нескольким смежным областям. Каталоги заполняются специалистами по определённой предметной области
19. Нелинейный резистор.
Резистор – это пассивный элемент, характеризующийся резистивным сопротивлением. Последнее определяется геометрическими размерами тела и свойствами материала: удельным сопротивлением (Ом м) или обратной величиной – удельной проводимостью (См/м).
В простейшем случае проводника длиной и сечением S его сопротивление определяется выражением
.
В общем случае определение сопротивления связано с расчетом поля в проводящей среде, разделяющей два электрода.
20. Нелинейная катушка индуктивности.
Катушка – это пассивный элемент, характеризующийся индуктивностью. Для расчета индуктивности катушки необходимо рассчитать созданное ею магнитное поле.
Индуктивность определяется отношением потокосцепления к току, протекающему по виткам катушки,
.
В свою очередь потокосцепление равно сумме произведений потока, пронизывающего витки, на число этих витков
21. Нелинейный конденсатор.
Конденсатор – это пассивный элемент, характеризующийся емкостью. Для расчета последней необходимо рассчитать электрическое поле в конденсаторе. Емкость определяется отношением заряда q на обкладках конденсатора к напряжению u между ними
и зависит от геометрии обкладок и свойств диэлектрика, находящегося между ними.