Цифровой стандарт радиосвязи GSM-R

В 1995 г. Международным Союзом железных дорог (МСЖД) была создана специальная рабочая группа (EIRENE), перед которой была поставлена задача разработки стандарта единой европейской интегрированной сети радиосвязи для железнодорожного транспорта. К работе этой группы, помимо экспертов в области связи, были привлечены также и поставщики телекоммуникационного оборудования. Новый стандарт, по мнению МСЖД, должен был удовлетворять следующим требованиям:

– за основу должен быть взят международный стандарт, который требовал бы минимальных модификаций, учитывающих специфику железнодорожного транспорта;

– должен быть проверен в сетях общего пользования;

– быть экономичным в эксплуатации;

– не должен использовать специфические для железных дорог элементы, с целью минимизации инвестиций;

– должен поддерживать существующие специфические услуги и системы радиосвязи;

– интегрировать все услуги в рамках единой сети;

– обладать высокой надежностью, доступностью и высоким качеством связи при скоростях до 500 км/ч;

– предусматривать возможность поэтапного ввода новых услуг.

Ключевым элементом МСЖД определил введение единого частотного диапазона. Наиболее привлекательным, по многим причинам, выглядел диапазон 900 МГц. Поэтому, оценив существующие стандарты радиосвязи, такие как TETRA и GSM, с точки зрения их функциональной пригодности для целей железных дорог, EIRENE остановила свой выбор на стандарте GSM. По ее мнению, именно GSM удовлетворяет всем предъявляемым требованиям. В 1995 г. ETSI был выделен и гарантирован частотный диапазон, граничащий с диапазоном сетей GSM-900 общего пользования с сеткой частот 876-880 MГц и 921-925 MГц (рисунок 2.1).

Сам же стандарт получил название GSМ-R (GSM-Railway — стандарт GSM для железнодорожного транспорта). Учитывая широкое распространение GSM в мобильных сетях общего пользования, следует отметить, что с GSM европейские железные дороги сделали правильный выбор. Успех более чем в ста странах и ежегодный рост числа абонентов подтверждают, что GSM

 

P-GSM — диапазон общедоступных сетей GSM; E-GSM — расширенный диапазон GSM

Рисунок 2.1 – Частотный диапазон системы GSM-R в Европе

 

является наиболее распространенной и надежной цифровой технологией систем беспроводной связи. Решение МСЖД выбрать технологию, которая широко распространена на мировом рынке, имеет множество различных поставщиков оборудования и которая требует минимальных модификаций для адаптации под нужды железных дорог, является оптимальным. Базовые услуги GSM-R в настоящее время уже реализованы, протестированы и приняты в эксплуатацию в железнодорожных сетях нескольких стран. Около 35 европейских железных дорог взяли на себя обязательство обеспечить полную эксплуатационную совместимость и в области радиосвязи остановили выбор на GSM-R.

В рамках совмещенного проекта системы GSM-R и GSM можно получить дополнительную экономию, используя одни и те же мачты и излучающие фидеры.

Интеграция этой сети в европейскую систему управления движением поездов ETCS/ERMTS позволит обеспечить эксплуатационную совместимость в международных железнодорожных сообщениях в Европе.

Стандарт GSM-R создан путем внесения специализированных функций и свойств в стандарт GSM, разработанный институтом ETSI для общедоступных сетей сотовой радиосвязи в качестве системы радиосвязи с подвижными объектами на железнодорожном транспорте. За основу приняты директивы 96/48/EC и 2001/16/EC Европейской комиссии, где сформулированы основные требования к эксплуатационной совместимости европейских железнодорожных сообщений и содержатся ссылки на соответствующие технические спецификации TSI. В свою очередь, спецификации TSI ссылаются на функциональные и системные спецификации требований системы CLA111D003 и CLA111D004 EIRENE и соответствующие детальные стандарты Европейского комитета по стандартизации в области электротехники CENELEC и Европейского института стандартизации в области электросвязи ETSI, в первую очередь на стандарт GSM.

 

2.3.1 Функции стандарта GSM-R

Все специфические функции существующих сетей радиосвязи, эксплуатируемых в настоящее время на железнодорожном транспорте, должны поддерживаться и в будущем. Помимо этого, новые сети, построенные по стандарту GSM-R, обладают рядом дополнительных свойств, в числе которых предоставление расширенных услуг телефонной связи ASCI, которые позволяют удовлетворить особые потребности железных дорог за счет применения групповых VGCS и циркулярных VBS вызовов, а также механизма приоритетов eMLPP.

Групповой звонок VGCS – это голосовое соединение между несколькими участниками в границах заранее определенной области (групповой звонок передается только на заранее определенные станции определенной области, Service Area), где все участники разговора должны быть членами одной группы. Групповой звонок может инициировать любой участник группы, набрав номер группового вызова. Пример организации группового звонка показан на рисунке 2.2.

Рисунок 2.2 – Пример организации услуги группового вызова

 

Одновременно может говорить только один участник группы. Разговорный канал можно активизировать, нажав кнопку разговора (Push-to-Talk-Taste PTT). Участник может присоединиться к разговору и после его начала (Late Entry). Инициатор группового звонка группу может оставить, прервав групповой звонок или оставив его в силе. В этом случае участники разговора могут его продолжать. Один участник может быть членом различных групп. В группе могут быть одновременно клиенты мобильной и стационарной сети телекоммуникаций. Если активизируется групповой звонок, участник может выбрать, принять его или нет.

Голосовое вещание и голосовые сборные звонки VBS.В отличие от Voice Group Call Service, Voice Broadcast Service – это соединение одного участника в одном направлении со многими участниками в определенной области (Service Area). Эти участники должны быть членами одной VBS-группы. Говорить может только тот, кто инициировал вещание, и только он может прервать соединение. И здесь участник может быть членом многих групп.

В отношении групп здесь распространяются те же правила, как при групповых звонках.

Преимущество и исключение - приоритеты eMLPP.Различным видам звонков можно присвоить различные приоритеты. Приоритетные классы установлены Международным Союзом Железных Дорог (МСЖД). Звонки с более высоким приоритетом в случае проблемы сети, когда нет свободных каналов, отключают звонки с более низким приоритетом.

Дополнительно к функциям ASCI железная дорога использует такие специфические функции, как, например, особая адресация разговора. Эти услуги построены на основе интеллектуальной сети (IN).

Функциональная адресация FA.В случае функциональной адресации (рисунок 2.3) звонок адресуется, используя не номер адресата, который присвоен его конечному терминалу, например, номер MSISDN, а функцию или должность (функциональный номер, функциональный адрес).

Рисунок 2.3 – Функциональная адресация (цифрами показан порядок обработки вызова)

Адресация, зависящая от места LDA.В случае звонка по адресации, зависящей от географической зоны, соединения составлены для производителей определенных функций в зависимости от места нахождения звонящего, например, для имеющихся центров управления поездами на определенной территории. При адресации в зависимости от местоположения (рисунок 2.4) машинист набирает унифицированный в масштабе Европы укороченный номер и автоматически соединяется с диспетчером, ответственным за данный участок пути.

Выбор правильного абонентского номера на рабочем месте диспетчера, отвечающего за участок, осуществляется в системе IN на основе идентификатора ячейки сети GSM-R. Кроме того, здесь задействуется так называемая матрица доступа, отвечающая за то, что на функциональном уровне переговоры друг с другом ведут только абоненты, обладающие соответствующими полномочиями.

 

Рисунок 2.4 – Адресация в зависимости от местоположения

Железнодорожные аварийные вызовы.Железнодорожные внеочередные вызовы – это групповые звонки, которые с высшим приоритетом адресованы всем участникам какой-либо группы по заранее установленной географической области (Service Area). Они используют функцию eMLPP и поэтому исключают во время звонка имеющиеся другие соединения. Имеются два вида внеочередных звонков: внеочередной звонок поездного движения и внеочередной звонок маневровых и сортировочных работ. Если производится аварийный звонок, прерываются все простые разговоры, даже связанные с организацией движения и маневровой работы. Эти услуги могут быть реализованы в системе поездной радиосвязи, где диспетчер может, например, вызвать все поезда, находящиеся в пределах зоны группового вызова, составленной из зон действия нескольких базовых радиостанций. Механизм приоритетов вызовов и их замещения работает при разных уровнях загрузки сети, т. е. экстренный вызов поезда возможен в любое время даже при занятых ресурсах.

Режим прямой связи Direct Mode.Для данной функции, прямое соединение между конечным оборудованием без использования инфраструктуры, зарезервированы 5 частот между 876.0125 и 876.0625 MHz с разносом через 12,5 KHz.

Европейская объединенная железнодорожная расширенная сеть выделяет четыре категории специфичных услуг для систем GSM-R.

Железнодорожная сигнализация.Эта категория услуг непосредственно связана с задачей управления движением. Бортовой поездной компьютер должен передавать данные о нахождении поезда, его скорости, количестве вагонов и другую информацию в Радио Блок Центры автоблокировки (RBC). Сеть RBC сравнивает данные, полученные от всех поездов в соответствующей зоне, рассчитывает необходимую информацию о профиле скорости для каждого поезда и передает ее на бортовой компьютер. Такой подход в сочетании с отсутствием проводных каналов позволяет перейти от традиционной фиксированной блочной структуры управления движением к подвижной блочной структуре. При этом появляется возможность уменьшения средней безопасной дистанции между поездами, что позволяет оптимизировать движение и минимизировать задержки поездов. Эти функции реализуются в рамках европейской системы управления железнодорожным движением и европейской системы управления поездом ERTMS/ETCS. Путевое и бортовое оборудование ERTMS/ETCS имеет модульную архитектуру, которая обеспечивает гибкую установку на различных типах транспортных средств и адаптацию к различным путевым интерфейсам. RBC формируют команды, исходя из информации, получаемой от системы централизации и блокировки, в соответствии со стандартами ERTMS/ETCS и передают их транспортным средствам с помощью мобильной радиосвязи GSM-R. Бортовые системы обрабатывают получаемую информацию. Это позволяет вести наблюдение за такими параметрами, как разрешенная скорость на линии и кривыми торможения, которые отображаются на экране интерфейса машиниста. Транспортные средства сообщают свое местоположение на RBC.

К категории железнодорожной сигнализации или передачи данных относятся также услуги, связанные с дистанционным управлением различными функциональными устройствами, начиная с дистанционного управления маневровыми локомотивами, кранами и сигнальными мостиками и заканчивая телеуправлением и телеконтролем различными объектами инфраструктуры.

Функциональная голосовая связь.Поездная радиосвязь охватывает широкий набор различных функциональных систем связи, каждая из которых характеризуется типичным набором услуг, пришедших из оперативно-технологических радиосистем. Эти услуги поддерживаются системой GSM-R с модификациями и расширениями. Помимо этого, обеспечиваются и дополнительные услуги.

Основная функция поездной радиосвязи заключается в обеспечении связи поездного или маневрового диспетчера с машинистом поезда и наоборот. В аварийных ситуациях соответствующие должностные лица имеют возможность связаться с любым поездом, а также имеют доступ к выделенным и другим функциям поездов в пределах конкретной зоны.

Члены маневровых бригад также связываются друг с другом и с фиксированным диспетчерским центром. Обычно дуплексная связь для таких бригад необходима только для обеспечения соединений «точка–точка», тогда как при групповом вызове может использоваться симплексный режим. Эта услуга в зависимости от требований конкретной железной дороги может быть либо непосредственно определена в GSM-R как мультиабонентский вызов, либо реализована с помощью бортовой проводной системы.

Персонал бригад путевого, электротехнического хозяйства использует сегодня либо радиостанции, либо установленные вдоль железнодорожных путей телефоны, обеспечивающие связь через проводные линии, либо мобильные телефоны публичного пользования. Это требует большого количества различных терминалов, что увеличивает расходы на эксплуатацию и техобслуживание.

Персонал бригад, обслуживающий инфраструктуру, использует терминалы GSM-R, а установленные вдоль путей телефонные аппараты используются в аварийных ситуациях. Радиотелефонные трубки путевых бригад и установленные вдоль путей телефонные аппараты должны поддерживать взаимное соединение посредством увязки GSM-R и фиксированной сетей. Локальная связь на железнодорожных станциях и участках обычно обеспечивается посредством фиксированных сетей PABX, PBX. Для улучшения функциональности и доступности эти сети могут быть подключены к GSM-R MSC/VLR непосредственно или как удаленные устройства доступа.

Локальная и глобальная (не оперативная) связь для передачи речи и данных.Локальная и глобальная связь в современных железнодорожных сетях обычно представляет собой связь между различными железнодорожными организациями. Сегодняшние требования мобильности для этого типа соединений существуют только до определенного предела. Поэтому данная категория услуг может быть отнесена к связи с низкой мобильностью или без мобильности вообще и не будет использовать GSM-R для поддержки своего функционального назначения. Тем не менее, в зависимости от концепции конкретной железной дороги, эти абоненты могут подключаться к виртуальным частным сетям с помощью SSS GSM-R.

Дополнительные услуги связи для пассажиров.Сегодня пассажиры не могут получить по бортовой связи полной информации, касающейся поездки, или справок от поездного персонала. В будущем информация в пути следовании должна быть доступна через сеть радиосвязи. Новые услуги, такие как резервирование билетов, изменение или отмена брони, доведение информации об изменениях в расписании движения поездов, о задержках и пересечениях поездов для транзитных пассажиров, заказ гостиницы, такси или авиабилетов, планирование маршрута, должны быть доступны для пассажиров.

 

 

2.3.2 Структура сети GSM-R

Структура сети GSM-R существенно не отличается от структуры мобильных сетей общего пользования и их расширений в смысле элементов сети, стандартизованных интерфейсов и сопряжения. Повторное использование частот для расширения емкости сети, микросотовая структура в зонах высокой плотности (например, на железнодорожных станциях) и принципы наложенной сети с зависящим от скорости переключением уже используются в сети GSM общего пользования и поэтому достаточно просто реализуемы в GSM-R с небольшими модификациями, учитывающими специфику железных дорог. Различия заключаются лишь в конфигурации и планировании сети, вытекающими из критических требований железнодорожных сетей.

Фундаментальным требованием к структуре сети GSM-R является наличие непрерывной сети радиосот, расположенных вдоль железнодорожной колеи. Каждая радиосота содержит одну или более приемо-передающих станций с направленными антеннами вдоль колеи, которые, в свою очередь, подключаются к контроллерам базовых станций. Каждый контроллер отвечает за обслуживание определенного количества радиосот. В целом контроллер базовых станций представляет собой интерфейс к системе коммутации, через которую подключаются все линии связи и обеспечивается соединение с другими сетями.

Так сложилось, что в пределах железнодорожных станций генерируется более высокий трафик (так называемая горячая зона), однако требования к надежности связи при перемещении в такой зоне не так высоки, как на скоростных участках. По этой причине на крупных железнодорожных станциях целесообразнее использовать секторизованные соты, а в зонах с пониженной плотностью абонентов и с невысокими скоростями движения объектов лучше использовать радиальные или всенаправленные соты.

Типичная структура сети GSM-R показана на рис. 2.5, на которой MSC – центр коммутации подвижной связи; SSP – служба пункта коммутации различных сервисов, BSS – оборудование базовой станции; ОМС – центр управления и обслуживания; MS – подвижные станции; ABC – административный и биллинговый центр; SMP – служба точки управления; SCP – служба контрольной точки; CBS – служба сотового вещания. Сеть состоит из мобильного коммутационного центра MSC с регистрами «гостевых» абонентов (регистры перемещения) VLR. VLR подключаются к национальному или международному уровню так называемых регистров «домашних» абонентов (регистры положения) HLR, которые позволяют осуществить связь при пересечении границ.

Рисунок 2.5 – Структура сети GSM-R

 

Регистры группового вызова GCR отвечают за обслуживание групповых вызовов, одной из базовых услуг GSM-R для аварийной и маневровой связи. Центры радиосвязи OMC, подключенные к коммутационному центру, обеспечивают обмен сигнальной информацией для управления движением в пределах сети. Существующие аналоговые или цифровые телефонные аппараты (PABX, PBX), сети с коммутацией пакетов PDN, а также частные ISDN-сети или ISDN-сети общего пользования могут подключаться к GSM-R для обеспечения непосредственной связи с поездами.

Функциональное сопряжение элементов системы осуществляется рядом интерфейсов.

Все сетевые функциональные компоненты в стандарте GSM взаимодействуют в соответствии с системой сигнализации SS7 ISUP2 ETSI ETS 300 356-1.

Центр коммутации подвижной связи обслуживает группу сот и обеспечивает все виды соединений, в которых нуждается в процессе работы подвижная станция. MSC аналогичен ISDN коммутационной станции и представляет собой интерфейс между фиксированными сетями (PSTN, PDN, ISDN, PBX, GSM-R смежных и других железных дорог и т.д.) и сетью подвижной связи. Он обеспечивает маршрутизацию вызовов и функции управления вызовами. Кроме выполнения функций обычной ISDN коммутационной станции, на MSC возлагаются функции коммутации радиоканалов. К ним относятся "эстафетная передача", в процессе которой достигается непрерывность связи при перемещении подвижной станции из соты в соту, и переключение рабочих каналов в соте при появлении помех или неисправностях.

Каждый MSC обеспечивает обслуживание подвижных абонентов, расположенных в пределах определенной географической зоны. Для небольших железных дорог достаточно одного MSC или двух в случае полного резервирования системы связи GSM-R. MSC управляет процедурами установления вызова и маршрутизации. Для телефонной сети общего пользования PSTN MSC обеспечивает функции сигнализации по протоколу SS7, передачи вызова или другие виды интерфейсов в соответствии с требованиями конкретного проекта.

MSC формирует данные, необходимые для учета трафика и формирования счетов за предоставленные сетью услуги связи, накапливает данные по состоявшимся разговорам и передает их в центр расчетов. MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети.

MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления, кроме передачи управления в подсистеме базовых станций BSS.

Также в центре коммутации формируются CDR-файлы (Call Data Recorder) для предоставления в биллинговую систему. Они содержат информацию о месте и времени начала и завершения звонка. MSC осуществляет «мониторинг» мобильных станций (мобильных телефонов), используя регистры:

HLR ( Home Location Register) — домашний регистр местоположения

VLR ( Visitor Location Register) — гостевой регистр местоположения.

HLR (Home Location Register) — домашний регистр местоположения представляет собой компьютерную базу данных о домашних абонентах – пользователях мобильной связи, вне зависимости от состояния мобильного телефона (вкл. или выкл.).

Центр коммутации осуществляет постоянное слежение за подвижными станциями, используя регистры положения HLR и перемещения VLR. В HLR хранится та часть информации о местоположении какой-либо подвижной станции, которая позволяет центру коммутации доставить вызов станции. Регистр HLR содержит международный идентификационный номер подвижного абонента IMSI.

Он используется для опознавания подвижной станции в центре аутентификации AUC.

Практически HLR представляет собой справочную базу данных о постоянно прописанных в сети абонентах. В ней содержатся опознавательные номера и адреса, а также параметры подлинности абонентов, состав услуг связи, специальная информация о маршрутизации.

Второе основное устройство, обеспечивающее контроль за передвижением подвижной станции из зоны в зону, – регистр перемещения VLR. С его помощью достигается функционирование подвижной станции за пределами зоны, контролируемой HLR. Когда в процессе перемещения подвижная станция переходит из зоны действия одного контроллера базовой станции BSC, объединяющего группу базовых станций, в зону действия другого BSC, она регистрируется новым BSC, и в VLR заносится информация о номере области связи, которая обеспечит доставку вызовов подвижной станции. Для сохранности данных, находящихся в HLR и VLR, в случае сбоев предусмотрена защита устройств памяти этих регистров.

VLR содержит такие же данные, как и HLR, однако эти данные содержатся в VLR только до тех пор, пока абонент находится в зоне, контролируемой VLR.

В сети подвижной связи GSM соты группируются в географические зоны LA, которым присваивается свой идентификационный номер LAC. Каждый VLR содержит данные об абонентах в нескольких LA. Когда подвижный абонент перемещается из одной LA в другую, данные о его местоположении автоматически обновляются в VLR. Если старая и новая LA находятся под управлением различных VLR, то данные на старом VLR стираются после их копирования в новый VLR. Текущий адрес VLR абонента, содержащийся в HLR, также обновляется. VLR также распределяет номера передачи управления при передаче соединений от одного MSC к другому.

Для исключения несанкционированного использования ресурсов системы связи вводятся механизмы аутентификации – удостоверения подлинности абонента. AUC принимает решения о параметрах процесса аутентификации и определяет ключи шифрования абонентских станций на основе базы данных, сосредоточенной в регистре идентификации оборудования EIR.

Каждый подвижный абонент на время пользования системой связи получает стандартный модуль подлинности SIM-карты, который содержит международный идентификационный номер IMSI, свой индивидуальный ключ аутентификации, алгоритм аутентификации.

С помощью записанной в SIM информации в результате взаимного обмена данными между подвижной станцией и сетью осуществляется полный цикл аутентификации и разрешается доступ абонента к сети.

EIR – регистр идентификации оборудования, содержит централизованную базу данных для подтверждения подлинности международного идентификационного номера оборудования подвижной станции IМЕI. Эта база данных относится исключительно к оборудованию подвижной станции. База данных EIR состоит из различных списков номеров IМЕI.

К базе данных EIR получают дистанционный доступ MSC данной сети, а также MSC других подвижных сетей.

Как и в случае с HLR, сеть может иметь более одного EIR, при этом каждый EIR управляет определенными группами IМЕI. В состав MSC входит транслятор, который при получении номера IМЕI возвращает адрес EIR, управляющий соответствующей частью базы данных об оборудовании.

ОМС – центр эксплуатации и технического обслуживания, является центральным элементом сети GSM, который обеспечивает контроль и управление другими компонентами сети и контроль качества ее работы. ОМС соединяется с другими компонентами сети GSM по каналам пакетной передачи.

ОМС обеспечивает функции обработки аварийных сигналов, предназначенных для оповещения обслуживающего персонала, и регистрирует сведения об аварийных ситуациях в других компонентах сети.

NMC – центр управления сетью, позволяющий обеспечивать рациональное иерархическое управление сетью GSM. Он обеспечивает эксплуатацию и техническое обслуживание на уровне всей сети, поддерживаемой центрами ОМС, которые отвечают за управление региональными сетями. NMC обеспечивает управление трафиком во всей сети и обеспечивает диспетчерское управление сетью при сложных аварийных ситуациях (например, выход из строя или перегрузка узлов). Кроме того, он контролирует состояние устройств автоматического управления, задействованных в оборудовании сети, и отражает на дисплее состояние сети для операторов NMC. Это позволяет операторам контролировать региональные проблемы и, при необходимости, оказывать помощь ОМС, ответственному за конкретный регион. Таким образом, персонал NMC контролирует состояние всей сети и может дать указание персоналу ОМС изменить стратегию решения региональной проблемы.

 

 

NMC может брать на себя ответственность в каком-либо регионе, когда местный ОМС является необслуживаемым, при этом ОМС действует в качестве транзитного пункта между NMC и оборудованием сети. NMC обеспечивает операторов функциями, аналогичными функциям ОМС.

BSS – оборудование базовой станции, состоит из контроллера базовой станции BSC и приемо-передающих базовых станций BTS. Контроллер базовой станции может управлять несколькими приемо-передающими блоками. BSS управляет распределением радиоканалов, контролирует соединения, регулирует их очередность, обеспечивает режим работы с прыгающей частотой, модуляцию и демодуляцию сигналов, кодирование и декодирование сообщений, кодирование речи, адаптацию скорости передачи для речи, данных и вызова, определяет очередность передачи сообщений персонального вызова.

BSS совместно с MSC, HLR, VLR выполняет некоторые функции, например: освобождение канала, главным образом, под контролем MSC, но MSC может запросить базовую станцию обеспечить освобождение канала, если вызов не проходит из-за радиопомех. BSS и MSC совместно осуществляют приоритетную передачу информации для некоторых категорий подвижных станций.

ТСЕ (TRAU) – транскодер, обеспечивает преобразование выходных сигналов канала передачи речи и данных MSC (64 кбит/с ИКМ) к виду, соответствующему рекомендациям GSM по радиоинтерфейсу (Рек. GSM 04.08). В соответствии с этими требованиями скорость передачи речи, представленной в цифровой форме, составляет 13 кбит/с. Этот канал передачи цифровых речевых сигналов называется "полноскоростным".

Транскодер обычно располагается вместе с MSC, тогда передача цифровых сообщений в направлении к контроллеру базовых станций - BSC ведется с добавлением к потоку со скоростью передачи 13 кбит/с, дополнительных битов (стафингование) до скорости передачи 16 кбит/с. Затем осуществляется уплотнение с кратностью 4 в стандартный канал 64 кбит/с. Так формируется определенная Рекомендациями GSM 30-ти канальная ИКМ-линия (Е1), обеспечивающая передачу 120 речевых каналов. Шестнадцатый канал (64 кбит/с), "временное окно", выделяется отдельно для передачи информации сигнализации и часто содержит трафик SS 7 или LAPD. В другом канале (64 кбит/с) могут передаваться также пакеты данных, согласующиеся с протоколом X.25.

Таким образом, результирующая скорость передачи по указанному интерфейсу составляет 30х64 кбит/с + 64 кбит/с + 64 кбит/с = 2048 кбит/с.

 

Для реализации задачи по применению системы GSM-R в качестве основной системы технологической радиосвязи на участке Лазурная – Гомель – Кравцовка необходимо смонтировать базовые приёмо-передающие станции BTS (Base Transceiver Station), контроллеры базовых станций BSC (Base Station Controller), создать центр коммутации и управления цифровой системой технологической радиосвязи MSC (Mobile Switching Center), построить сеть цифровой технологической радиосвязи.

Структурная схема сети GSM-R показана на рисунке 2.6. Для уменьшения последствия выхода из строя базовой станции (BTS) или контроллера базовых станций (BSC) применяется петлевая архитектура.

 

Достоинство сотовых сетей подвижной радиосвязи заключается в высокой эффективности использования радиоспектра, достигаемой благодаря тому, что территория, где организуется СПР, делится на небольшие зоны (соты), в каждой из которых связь организуется с помощью различного набора частот. По условиям ЭМС не рекомендуется в одной частотной группе использовать интермодуляционно несовместимые частоты плана[3].

В центре каждой соты расположена базовая станция BS, обслуживающая находящиеся в данной соте мобильные станции MS. Совокупность рядом расположенных сот, в которых все частоты различны, образуют кластер[7].

Причем в одинаковых сотах различных кластеров MS и BS работают на одних и тех же частотах.

BS, на которых допускается повторное использование выделенного набора частот, удалены друг от друга на определённое расстояние, называемое защитным интервалом(рис. 2.7)

Рисунок 2.7 – Распределение в пространстве интерферирующих сот

 

При проектировании линии железной дороги оптимальный защитный интервал между ячейками одного типа может быть достигнут повторением трёх­ – четырёх ячеек (рис. 2.8).

Рисунок 2.8 – Распределение в пространстве интерферирующих сот вдоль линии железной дороги