Применяют следующую классификацию систем разработки нефтяных месторождений по двум указанным выше признакам.
Если предполагается, что нефтяное месторождение будет разрабатываться в основной период при режиме растворенного газа, для которого характерно незначительное перемещение водонефтяного раздела, т. е. при слабой активности законтурных вод, то применяют равномерное, геометрически правильное расположение скважин по четырехточечной или трехточечной сетке. В тех же случаях, когда предполагается определенное перемещение водонефтяного и газонефтяного разделов, скважины располагают с учетом положения этих разделов.
Параметр плотности сетки скважинSc, вообще говоря, может изменяться в очень широких пределах для систем разработки без воздействия на пласт.Так, при разработке месторождений сверхвязких нефтей (вязкостью в несколько тысяч10-3Па*с) он может составлять 1-2 104м2/скв. (1-2 гектар/скв). Нефтяные месторождения с низкопроницаемыми коллекторами (сотые доли мкм2) разрабатывают приSc=10-20•104м2/скв.Конечно, разработка как месторождений высоковязких нефтей, так и месторождений с низкопроницаемыми коллекторами при указанных значениях Scможет быть экономически целесообразной при значительных толщинах пластов, т. е. при высоких значениях параметра А. П. Крылова или при небольших глубинах залегания разрабатываемых пластов, т. е. при небольшой стоимости скважин. Для разработки обычных коллекторовSc= 25-64-104м2/скв.
При разработке месторождений с высокопродуктивными трещиноватыми коллекторамиScможет быть равен 70-100•104м2/скв и более.
ПараметрNкртакже изменяется в довольно широких пределах.
В некоторых случаях он может быть равен одному или нескольким десяткам тысяч тонн нефти на скважину, в других - доходить до миллиона тонн нефти на скважину.
Для систем разработки нефтяных месторождений без воздействия на пласт параметрω, естественно, равен нулю, а параметрωрможет составлять в принципе 0,1—0,2, хотя резервные скважины в основном предусматривают для системы с воздействием на нефтяные пласты.
Системы разработки нефтяных месторождений без воздействия на пластыприменяют редко, в основном в случае длительно эксплуатируемых сильно истощенных месторождений, при разработке сравнительно небольших по размерам месторождений с активной законтурной водой, месторождений, содержащих сверхвязкие неглубоко залегающие нефти, или месторождений, сложенных низкопроницаемыми глинистыми коллекторами.
3. Системы разработки при отсутствии воздействия на пласт и характеризующие их параметры.
Системы разработки при отсутствии воздействия на пласт. Если предполагается, что нефтяное месторождение будет разрабатываться в основной период при режиме растворенного газа, для которого характерно незначительное перемещение водонефтяного раздела, т.е. при слабой активности законтурных вод, то применяют равномерное, геометрически правильное расположение скважин по четырех- (рис. 2, а) или трехточечной (рис. 2, б) сетке. В тех же случаях, когда предполагается определенное перемещение водонефтяного и газонефтяного разделов, скважины располагают с учетом положения этих разделов (рис. 3).
Рис. 2. Расположение скважин по четырех- (а) и трехточечиой (б) сеткам:
1 - условный контур нефтеносности; 2 - добывающие скважины
Рис. 3. Расположение скважин с учетом водо- и газонефтяного разделов:
1 - внешний контур нефтеносности;
2 - внутренний контур нефтеносности;
3 - добывающие скважины;. 4 - внешний контур газоносности; 5 - внутренний контур газоносности
Параметр плотности сетки скважин Sc может изменяться в очень широких пределах для систем разработки без воздействия на пласт. Так, при разработке месторождений высоковязких нефтей (вязкостью в несколько тысяч 103 Па×с) он может составлять 1-2×104 м2/скв. Нефтяные месторождения с низкопроницаемыми коллекторами (сотые доли мкм2) разрабатывают при Sc = 10¸20×104 м2/скв. Конечно, разработка как месторождений высоковязких нефтей, так и месторождений с низкопроницаемыми коллекторами при указанных значениях Sc может быть экономически целесообразной при значительных толщинах пластов, т.е. при высоких значениях параметра А.П. Крылова или при небольших глубинах залегания разрабатываемых пластов, т.е. при небольшой стоимости скважин. Для разработки обычных коллекторов Sc = 25 ¸ 64×104 м2/скв.
При разработке месторождений с высокопродуктивными трещиноватыми коллекторами Sc может быть равен 70¸ 100×104 м2/скв. и более.
Параметр NКР также изменяется в довольно широких пределах. В некоторых случаях он может быть равен одному или нескольким десяткам тысяч тонн нефти на скважину, в других - доходить до миллиона тонн нефти на скважину. Для равномерной сетки скважин средние расстояния l между скважинами (см. рис. 2) вычисляют по следующей формуле:
l= Sc 1/2, (1.5)
где l- в м, а Sc - в м2/скв.
Формулу (1.5) можно использовать для вычисления средних условных расстояний между скважинами при любых схемах их расположения.
Для систем разработки нефтяных месторождений без воздействия на пласт параметр w, естественно, равен нулю, а параметр wР может составлять 0,1-0,2, хотя резервные скважины в основном предусматривают для систем с воздействием на нефтяные пласты.
Системы разработки нефтяных месторождений без воздействия на пласты применяют редко, в основном в случае длительно эксплуатируемых сильноистощенных месторождений, разработка которых началась задолго до широкого развития методов заводнения (до 50-х гг.); при разработке сравнительно небольших по размерам месторождений с активной законтурной водой, месторождений, содержащих сверхвязкие неглубоко залегающие нефти, или месторождений, сложенных низкопроницаемыми глинистыми коллекторами
Системы разработки с воздействием на пласты. Системы с законтурным воздействием (заводнением) и характеризующие их параметры.
4. Системы разработки с воздействием на пласты.
2.1. Системы с законтурным воздействием (заводнением). На рис. 4 в плане и в разрезе показано расположение добывающих и нагнетательных скважин при разработке нефтяного месторождения с применением законтурного заводнения. Здесь два ряда добывающих скважин пробурены вдоль внутреннего контура нефтеносности. Кроме того, имеется один центральный ряд добывающих скважин.
Рис. 4. Расположение скважин при законтурном заводнении:
1- нагнетательные скважины; 2 - добывающие скважины; 3 - нефтяной пласт; 4 -внешний контур нефтеносности; 5 - внутренний контур нефтеносности
Помимо параметра Sc для характеристики систем с законтурным заводнением можно использовать дополнительные параметры, такие, как расстояние между контуром нефтеносности и первым рядом добывающих скважин l01, первым и вторым рядом добывающих скважин l12 и т.д., а также расстояния между добывающими скважинами 2sC. Нагнетательные скважины расположены за внешним контуром нефтеносности. Размещение трех рядов добывающих скважин (см. рис. 4) характерно для сравнительно небольших по ширине месторождений. Так, при расстояниях между рядами, а также между ближайшим к контуру нефтеносности рядом и самим контуром нефтеносности, равных 500-600 м, ширина месторождения b составляет 2-2,5 км. При большей ширине месторождения на его нефтеносной площади можно расположить пять рядов добывающих скважин. Однако дальнейшее увеличение числа рядов скважин, как показали теория и опыт разработки нефтяных месторождений, нецелесообразно. При числе рядов добывающих скважин больше пяти центральная часть месторождения слабо подвергается воздействию законтурным заводнением, пластовое давление здесь падает, и эта часть разрабатывается при режиме растворенного газа, а затем после образования ранее не существовавшей (вторичной) газовой шапки - при газонапорном. Естественно, законтурное заводнение в данном случае окажется малоэффективным воздействием на пласт.
Системы разработки нефтяного месторождения с применением законтурного заводнения, как и все системы с воздействием на пласт, отличаются от систем без воздействия на пласт, как правило, большими значениями параметров Sc и NКР, т.е. более редкими сетками скважин. Эта особенность при воздействии на пласт связана, во-первых, с получением больших дебитов скважин, чем при разработке без воздействия на пласт, что позволяет обеспечить высокий уровень добычи нефти из месторождения в целом меньшим числом скважин. Во-вторых, она объясняется возможностью достижения при воздействии на пласт большей нефтеотдачи и, следовательно, возможностью установления больших значений извлекаемых запасов нефти, приходящихся на одну скважину.
Параметр w для систем с законтурным заводнением колеблется в широких пределах от 1 до 1 /5 и менее.
Параметр wР для всех систем разработки нефтяных месторождений с воздействием на пласт колеблется примерно в пределах 0,1-0,3.
2.2. Системы с внутриконтурным воздействием, получившие в нашей стране наибольшее развитие при разработке нефтяных месторождений, используют не только при воздействии на пласт путем заводнения, но и при других технологиях разработки, применяемых с целью повышения нефтеотдачи пластов.
Подразделяются эти системы на рядные и площадные системы.
2.2.1. Рядные системы разработки. Разновидность их — блоковые системы. При этих системах на месторождениях, обычно в направлении, поперечном их простиранию, располагают ряды добывающих и нагнетательных скважин. Практически применяют одно-, трех- и пятирядную схемы расположения скважин, представляющие собой соответственно чередование одного ряда добывающих скважин и ряда нагнетательных скважин, трех рядов добывающих и одного ряда нагнетательных скважин, пяти рядов добывающих и одного ряда нагнетательных скважин. Более пяти рядов добывающих скважин обычно не применяют, так как в этом случае в центральной части полосы нефтеносной площади, заключенной между рядами нагнетательных скважин, воздействие на пласт заводнением ощущаться практически не будет, в результате чего произойдет падение пластового давления с соответствующими последствиями.
Число рядов в рядных системах нечетное вследствие необходимости проводки центрального ряда скважин, к которому предполагается стягивать водонефтяной раздел при его перемещении в процессе разработки пласта. Поэтому центральный ряд скважин в этих системах часто называют стягивающимрядом.
Однорядная система разработки. Расположение скважин при такой системе показано на рис. 5. Рядные системы разработки необходимо характеризовать уже некоторыми иными параметрами (помимо указанных четырех основных). Так, помимо расстояния между нагнетательными скважинами 2sН и расстояния между добывающими скважинами 2sС следует учитывать ширину блока или полосы LП (см. рис. 5).
Рис. 5. Схема расположения скважин при однорядной системе разработки:
1 - контур нефтеносности; 2 - нагнетательная скважина; 3 - добывающая скважина; 4 - элемент однорядной системы разработки
Параметр плотности сетки скважин Sc и параметр NКР для одно-, трех- и пятирядной систем могут принимать примерно такие же или большие значения, что и для систем с законтурным заводнением. Параметр w для рядных систем более четко выражен, чем для системы с законтурным заводнением. Однако он может колебаться в некоторых пределах. Так, например, для рассматриваемой однорядной системы w»1. Это значит, что число нагнетательных скважин примерно (но не точно!) равно числу добывающих, поскольку число этих скважин в рядах и расстояния 2sН и 2sС могут быть различными. Ширина полосы при использовании заводнения может составлять 1-1,5 км, а при использовании методов повышения нефтеотдачи - меньшие значения.
Поскольку в однорядной системе число добывающих скважин примерно равно числу нагнетательных, то эта система очень интенсивная. Эту систему используют при разработке низкопроницаемых, сильнонеоднородных пластов с целью обеспечения более высокого темпа разработки и охвата пластов воздействием, а также при проведении опытных работ на месторождениях по испытанию технологии методов повышения нефтеотдачи пластов, поскольку она обеспечивает возможность быстрого получения тех или иных результатов.
Элемент однорядной системы разработки показан на рис. 6. При этом шахматному расположению скважин (см. рис. 5) соответствуют нагнетательная скважина 2 и добывающая скважина 3.
Рис. 6. Элемент однорядной системы разработки:
1 - элемент; 2 - "четверть" добывающей скважины; 3 -"четверть" нагнетательной скважины
Трех- и пятирядная системы.
Для трех- и пятирядной систем разработки имеет значение не только ширина полосы LП, но и расстояния между нагнетательными и первым рядом добывающих скважин l01, между первым и вторым рядом добывающих скважин l12 (рис. 7), между вторым и третьим рядом добывающих скважин для пятирядной системы l23 (рис. 8). Ширина полосы LП зависит от числа рядов добывающих скважин и расстояния между ними. Если, например, для пятирядной системы l01= l12= l23=700 м, то LП = 4,2 км.
Рис. 7. Расположение скважин при трехрядной системе разработки:
1 - условный контур нефтеносности; 2 - добывающие скважины; 3 — нагнетательные скважины; 4 - элемент трехрядной системы
Для трехрядной системы w = 1/3, а для пятирядной w= 1/5. При значительной приемистости нагнетательных скважин по трех- и пятирядной системам число их вполне обеспечивает высокие дебиты жидкости добывающих скважин и высокий темп разработки месторождения в целом. Конечно, трехрядная система более интенсивная, нежели пятирядная, и обеспечивает определенную возможность повышения охвата пласта воздействием через нагнетательные скважины путем раздельной закачки воды или других веществ в отдельные пропластки. В то же время при пятирядной системе имеются большие, по сравнению с трехрядной, возможности для регулирования процесса разработки пласта путем перераспределения отборов жидкости из отдельных добывающих скважин.
Рис. 8. Расположение скважин при пятирядной системе разработки:
1 - 3 - см. рис. 7
На рис. 9 показан элемент трехрядной системы. Соответствующим образом выделяется элемент пятирядной системы разработки.
Рис. 9. Элемент трехрядной системы разработки:
1 — "четверть" добывающей скважины; 2 - одна добывающая скважина; 3 - "четверть" нагнетательной скважины
2.2.2. Системы с площадным расположением скважин. Рассмотрим наиболее часто используемые на практике системы разработки нефтяных месторождений с площадным расположением скважин: пяти-, семи- и девятиточечную.
Пятиточечная система (рис. 10). Элемент системы представляет собой квадрат, в углах которого находятся добывающие скважины, а в центре - нагнетательная. Для этой системы отношение нагнетательных и добывающих скважин составляет 1 : 1, w = 1.
Рис. 10. Расположение скважин при пятиточечной системе разработки:
1- условный контур нефтеносности; 2, 3 - скважины соответственно нагнетательные и добывающие
Семиточечная система (рис. 11). Элемент системы представляет собой шестиугольник с добывающими скважинами в вершине и нагнетательной в центре. Добывающие скважины расположены в углах шестиугольника, а нагнетательная - в центре. Параметр w = 1/2, т.е. на одну нагнетательную скважину приходятся две добывающие.
Рис. 11. Расположение скважин при семиточечной системе разработки:
1—3 - см. рис. 10
Девятиточечная система (рис. 12). Соотношение нагнетательных и добывающих скважин составляет 1:3, так что w = 1/3.
Рис. 12. Расположение скважин при девятиточечной системе разработки:
1—3 ~ см. рис. 10
Самая интенсивная из рассмотренных систем с площадным расположением скважин пятиточечная, наименее интенсивная девятиточечная. Считается, что все площадные системы "жесткие", поскольку при этом не допускается без нарушения геометрической упорядоченности расположения скважин и потоков движущихся в пласте веществ использование других нагнетательных скважин для вытеснения нефти из данного элемента, если нагнетательную скважину, принадлежащую данному элементу,нельзя эксплуатировать по тем или иным причинам.
Преимущество системы с площадным расположением скважин - возможность более рассредоточенного воздействия на пласт в процессе разработки сильнонеоднородных по площади пластов.
Преимущество рядных систем - их большая гибкость по сравнению с системами с площадным расположением скважин, больший охват пласта воздействием по вертикали. Таким образом, рядные системы предпочтительны при разработке сильнонеоднородных по вертикальному разрезу пластов.
3. Скважинно-трещинные системы разработки. Использование скважин с горизонтальными стволами при разработке сильнослоистых пластов, особенно таких, где отдельные проницаемые прослои отделены друг от друга непроницаемыми перемычками, может привести к значительному снижению нефтеотдачи ввиду того, что горизонтальными слоями вскрываются в лучшем случае лишь отдельные прослои пласта, а из остальных нефтенасыщенных слоев нефть не извлекается.
Одним из выходов из этой трудности является применение таких наклонно направленных скважин, стволы которых, будучи не вполне горизонтальными, вскрывают все прослои пласта. Однако эффективность таких скважин по сравнению с обычными вертикальными скважинами невелика, так как площади дренирования ими отдельных прослоев останутся небольшими.
Преодолеть описанную выше трудность позволяет массовое проведение на месторождении гидравлического разрыва пласта (ГРП) как в вертикальных, так и в наклонно направленных скважинах. В этом случае на месторождении будет создана особая система разработки, которую можно назвать скважинно-трещинной системой разработки.
ГРП - это специальная технологическая операция по воздействию, в первую очередь, на прилегающую к стволу скважины зону пласта ("призабойную зону"), при осуществлении которой в скважине, в пределах продуктивного пласта, создается высокое давление путем закачки в пласт загущенной жидкости. Под действием высокого давления в породах пласта образуются трещины. В большинстве случаев при этом создаются трещины, рассекающие пласт в вертикальном направлении ("вертикальные трещины"), имеющие значительную протяженность (порядка 100 м и более) в горизонтальной плоскости. В процессе гидравлического разрыва пласта обычно получает наибольшее распространение одна вертикальная трещина, развивающаяся в две стороны от скважины.
Ориентация такой трещины в горизонтальной плоскости зависит от направления главных компонент естественного напряжения в горных породах пласта. Эти направления обычно сохраняются (остаются неизменными во времени) на значительных площадях в пределах месторождений.
Рис. 15. Схемы обычной однорядной (в) и скважинно-трещинной (б) систем расположения скважин:
1- добывающие скважины; 2 - оставшаяся в пласте нефть; 3 - обводненная область пласта; 4 - нагнетательные скважины; 5 - вертикальные трещины
В настоящее время известны методы инструментального определения ориентации трещин. Это позволяет, в свою очередь, создавать системы разработки, при которых осуществляется прямолинейное вытеснение нефти водой.
На рис. 15, а показана схема продвижения водонефтяного контакта на некотором участке с однорядной схемой расположения скважин, а на рис. 15, 6 - то же, но при наличии вертикальных трещин, распространившихся в обе стороны от скважин перпендикулярно к направлению вытеснения нефти водой, т.е. в скважинно-трещинной системе разработки. Охват пласта воздействием, а следовательно, и конечная нефтеотдача (см. рис. 15, 6) будут выше, чем в случае, представленном на рис. 15, а.