Бесповторное. Попавшая в выборку единица не возвращается в совокупность, из которой происходит отбор.
Понятие выборочного наблюдения. Причины его применения.
Выборочное наблюдение – такое не сплошное наблюдение, при котором статистическому обследованию подвергаются единицы изучаемой совокупности, отобранные определенным образом.Цель (задача) выборочного наблюдения: по обследуемой части дать характеристику всей совокупности единиц при условии соблюдения всех правил и принципов статистического наблюдения.
Причины применения выборочного наблюдения:
1. экономия материальных, трудовых затрат и времени;
2. возможность более детально и подробно изучит отдельные единицы статистической совокупности и их группы.
3. некоторые специфические задачи можно решить только с применением выборочного наблюдения.
4. грамотное и хорошо организованное выборочное наблюдение дает высокую точность результатов.
Генеральная совокупность – совокупность единиц, из которых производится отбор.
Выборочная совокупность – совокупность отобранных для обследования единиц. В статистике принято различать параметры генеральной совокупности и выборочной совокупности.
Виды выборочного наблюдения:
I По методу отбора:
Повторное. Попавшая в выборку единица после регистрации наблюдаемых признаков возвращаются в генеральную совокупность для участия в дальнейшей процедуре отбора.
Объем генеральной совокупности остается неизменным, что обуславливает постоянное попадание в выборку какой-либо единицы.
Бесповторное. Попавшая в выборку единица не возвращается в совокупность, из которой происходит отбор.
II По способу отбора:1. Собственно-случайная заключается в отношении единиц из генеральной совокупности наугад или наудачу без каких-либо элементов системности. Однако прежде чем проводить такую выборку, нужно убедиться, что все единицы генеральной совокупности имеют равные шансы попасть в выборку, т.е. в полном перечне единиц статистической совокупности отсутствуют пропуски или игнорирования отдельных единиц. Следует, также, четко установить границы генеральной совокупности. Технически сложившейся отбор осуществляется методом жеребьевки или с помощью таблицы случайных чисел.2. Механическая выборка (каждый 5 по списку) применяется в случаях, когда генеральная совокупность каким-либо образом упорядочена, т.е. имеется определенная последовательность в распределении единиц. При проведении механической выборки устанавливается пропорция отбора, которая устанавливается соотношением генеральной совокупности и выборочной совокупности.Опасность ошибки при механической выборке может появляться вследствие: случайного совпадения выбранного интервала и циклических закономерностей в расположении единиц генеральной совокупности.3. Районированная выборка используется когда все единицы генеральной совокупности можно разбить на группы (районы, страны) по какому-либо признаку.
4. Серийный отбор. Используется когда ЕСС объединены в небольшие группы (серии), например упаковка с готовой продукцией, студенческие группы. Сущность серийной выборки – серии отбираются собственно случайным, либо механическим способом, а затем осуществляется сплошное обследование внутри отобранной серии.
5. Комбинированный отбор. Это комбинация рассмотренных выше способов отбора чаще применяется комбинация типичных и серийных серии, т.е. отбор серий из нескольких типических групп.Отбор может быть еще многоступенчатым и одноступенчатым, многофазным и однофазным.
6. Многоступенчатый отбор: из генеральной совокупности сначала извлекаются укрупненные группы, затем более мелкие, и так до тех пор, пока не будут отобраны те единицы, которые подвергаются обследованию.7. Многофразная выборка: предполагает сохранение одной и той же единицы отбора на всех этапах его проведения. При этом отобранные на каждой последующей стадии единицы отбора подвергаются обследованию, программа которого расширяется (Пример: студенты всего института, затем студенты каких-то факультетов).
8. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ.Все явления ипроцессы, характеризующие социально-экономическое развитие и составляющие единую систему национальных счетов, тесно взаимосвязаны и взаимозависимы между собой.В статистике показатели, характеризующие эти явления, могут быть связаны либо корреляционной зависимостью, либо быть независимыми. Корреляционная зависимость исследуется с помощью методов корреляционного и регрессионного анализов.
1) Корреляция — это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.
В статистике принято различать следующие варианты зависимостей.
1. Парная корреляция - связь между двумя признаками (результативным и факторным или двумя факторными).
2. Частная корреляция - зависимость между результативными одним факторным признаками при фиксированном значении других факторных признаков.
3. Множественная корреляция - зависимость результативного и двух или более факторных признаков, включенных в исследование.
Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при много фактор ной связи).
Корреляционный анализ изучает взаимосвязи показателей и позволяет решить следующие задачи:
1. Оценка тесноты связи между показателями с помощью парных, частных и множественных коэффициентов корреляции. 2. Оценка уравнения регрессии.
Корреляционно-регрессионный анализ как общее понятие включает в себя измерение тесноты, направления связи и установление аналитического выражения (формы) связи (регрессионный анализ).
2) Регрессионныйанализ заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимой или результативным признаком) обусловлено влиянием одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения.
Целью регрессионного анализаявляется оценка функциональной зависимости условного среднего значения результативного признака (У) от факторных (х,, х2, ..., хк).
Основной предпосылкой регрессионного анализаявляется то, что только результативный признак (У) подчиняется нормальному закону распределения, а факторные признаки х,, х2, ..., хк могут иметь произвольный закон распределения. В анализе динамических рядов в качестве факторного признака выступает время I. При этом в регрессионном анализе заранее подразумевается наличие причинно-следственных связей между результативным (У) и факторными (х,, х2, ..., хк) признаками.
Уравнение регрессии, или статистическая модель связи социально-экономических явлений, выражаемая функцией Ух = Г(х1( х2, ..., хк), является достаточно адекватным реальному моделируемому явлению или процессу в случае соблюдения следующих требований их построения.
1. Совокупность исследуемых исходных данных должна быть однородной и математически описываться непрерывными функциями.
2. Возможность описания моделируемого явления одним или несколькими уравнениями причинно-следственных связей.
3. Все факторные признаки должны иметь количественное (цифровое) выражение.
4. Наличие достаточно большого объема исследуемой выборочной совокупности.
5. Причинно-следственные связи между явлениями и процессами следует описывать линейной или приводимой к линейной формами зависимости.
6. Отсутствие количественных ограничений на параметры модели связи.
7. Постоянство территориальной и временной структуры изучаемой совокупности.
Соблюдение данных требований позволяет исследователю построить статистическую модель связи, наилучшим образом аппроксимирующую моделируемые социально-экономические
явления и процессы.
Теоретическая обоснованность моделей взаимосвязи, построенных на основе корреляционно-регрессионного анализа, обеспечивается соблюдением следующих основных условий.
1.Все признаки и их совместные распределения должны подчиняться нормальному закону распределения.
2. Дисперсия моделируемого признака (У) должна все время оставаться постоянной при изменении величины (У) и значений факторных признаков.
3. Отдельные наблюдения должны быть независимыми, т. е. результаты, полученные в 1-м наблюдении, не должны быть связаны с предыдущими и содержать информацию о последующих наблюдениях, а также влиять на них.
Отступление от выполнения этих условий и предпосылок приводит к тому, что модель регрессии будет неадекватно отражать реально существующие связи между анализируемыми признаками.
Одной из проблем построения уравнения регрессии является ее размерность,т. е. определение числа факторных признаков, включаемых в модель. Их число должно быть оптимальным.
Сокращение размерности за счет исключения второстепенных, несущественных факторов позволяет получить модель, быстрее и качественнее реализуемую. В то же время построение модели малой размерности может привести к тому, что она будет недостаточно полно описывать исследуемое явление или процесс в единой системе национального счетоводства.
Практика выработала определенный критерий, позволяющий установить оптимальное соотношение между числом факторных признаков, включаемых в модель, и объемом исследуемой совокупности. Согласно данному критерию число факторных признаков (к) должно быть в 5-6 раз меньше объема изучаемой совокупности.
Построение корреляционно-регрессионных моделей, какими бы сложными они ни были, само по себе не вскрывает полностью всех причинно-следственных связей. Основой их адекватности является предварительный качественный анализ, основанный на учете специфики и особенностей сущности исследуемых социально-экономических явлений и процессов.