Элементарная струйка

Через любую точку Апотока (рис.3.3) всегда можно провести линию, в каждой точке которой вектор местной скорости в данный момент времени направлен по касательной к ней.

Линией тока называется линия, в каждой точке которой вектор скорости в данный момент времени направлен по касательной. Это понятие является центральным в методе Эйлера.

Рис. 3.3. Линия тока и траектория частицы жидкости

 

Траекториейназывается путь, который описывает точка при своём движении. При установившемся движении линия тока и траектория частицы совпадают. В общем случае неустановившегося движения в следующий момент времени через ту же точку А может проходить уже другая линия тока.

Вектор скорости с компонентами касателен к линии тока, т.е. совпадает по направлению с элементами линии тока , имеющего проекции на оси координат. Воспользуемся известным условием параллельности двух векторов – их проекции на оси координат должны быть пропорциональны друг другу

.

Полученное условие является уравнением линии тока в дифференциальной форме.

В частном случае при установившемся движении каждая линия тока сохраняет своё положение в пространстве и одновременно становится линией, по которой перемещаются частицы, т.е. совпадает с траекторией.

Элементарной струйкой называется совокупность линий тока, проходящих через все точки бесконечно малой площадки (рис.3.4).

Рис.3.4. Элементарная струйка и трубка тока

 

При установившемся движении элементарная струйка сохраняет с течением времени постоянными свою форму, размеры и положение в пространстве, что является следствием аналогичного свойства составляющих её линий тока.

При стремлении поперечных размеров струйки к нулю она в пределе стягивается в линию тока.

Боковая поверхность элементарной струйкиназываетсятрубкой тока(рис.3.4). Трубка тока, таким образом, является как бы непроницаемой стенкой, а элементарная струйка представляет собой самостоятельный элементарный поток.

В случае установившегося движения элементарная струйка обладает следующими тремя свойствами:

1) Форма элементарной стройки не меняется во времени, т.к. при установившемся движении не меняется форма линий тока;

2) Поверхность элементарной струйки (трубки тока) непроницаема, т.е. перетекание через боковые стенки отсутствует. Частицы жидкости, движущиеся в одной линии тока, не могут принадлежать другим;

3) Скорость и давление для всех точек данного поперечного сечения струйки постоянны, однако вдоль струйки эти величины могут меняться.

Таким образом, при установившемся движении элементарная струйка сохраняет с течением времени постоянными свою форму, размеры и положение в пространстве. Массообмен через боковую поверхность исключён, и движение жидкости возможно только вдоль элементарной струйки.

Если учесть несжимаемость жидкости, то получим следствие, лежащее в основе одного из центральных положений гидравлики, – уравнение неразрывности: объём жидкости, прошедший через любое поперечное сечение с площадью за время , должен равняться объёму жидкости, прошедшему через любое другое сечение с площадью за то же время.

Невыполнение сформулированного условия привело бы к изменению массы жидкости между двумя сечениями, что противоречит свойствам принятой модели жидкости как несжимаемой среды.

 


дкости как несжимаемой среды.