Нечеткие множества.

Пусть Е – универсальное множество, x – элемент E, а Р – некоторое свойство. Обычное (четкое) подмножество A универсального множества E, элементы которого удовлетворяют свойству Р, определяется как множество упорядоченных пар A={mA(х) /х}, где mA(х) – характеристическая функция, принимающая значение 1, если x удовлетворяет свойству Р, и 0 – в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа “да-нет” относительно свойства Р. В связи с этим, нечеткое подмножество A универсального множества E определяется, как множество упорядоченных пар A= {mA(х) /х}, где mA(х) – характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве M (например, M= [0,1]). Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A. Множество M называют множеством принадлежностей. Если M= {0,1}, то нечеткое подмножество A может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть E= {x1, x2, x3, x4, x5 }, M= [0,1]; A – нечеткое множество, для которого mA(x1)=0,3; mA(x2)=0; mA(x3)=1; mA(x4)=0,5; mA(x5)=0,9. Тогда A можно представить в виде:
A = {0,3 / x1; 0 / x2; 1 / x3; 0,5 / x4; 0,9 / x5}или
A=0,3/x1 È 0/x2 È 1/x3 È 0,5/x4 È 0,9/x5, или

A =
x1 x2 x3 x4 x5
0,3 0,5 0,9